This study summarizes the seasonal experimental data on the activity concentrations of indoor
222
Rn (Radon),
220
Rn (Thoron) and their progeny in Mansa and Muktsar districts of Punjab (India) using LR-115 solid state nuclear track detector based time integrated pin-hole cup dosimeters and deposition based progeny sensors for the assessment of radiological dose. The indoor
222
Rn concentration was observed higher in the rainy and winter seasons while
220
Rn concentration was observed higher in the winter season. However, Equilibrium Equivalent Concentrations (EECs) of
222
Rn and
220
Rn exhibited distinct seasonal behaviour unlike their parent nuclides. The average equilibrium factors for
222
Rn (F
Rn
) and
220
Rn (F
Tn
) were found 0.47 ± 0.1 and 0.05 ± 0.01, respectively. The annual arithmetic means of unattached fractions of
222
Rn (
) and
220
Rn (
) were found to be 0.09 ± 0.02 and 0.10 ± 0.02, respectively. The attachment rate (
X
Rn
) and attachment rate coefficients (
β
) of
222
Rn progeny were also calculated to understand the proper behaviour of progeny species in the region. A new alpha flux based technique has been proposed and used for the assessment of absorbed dose rate and annual effective dose rate for radiation protection purpose.
A study was conducted to assess the concentration of uranium and dissolved radon in drinking water samples collected from Jalandhar district of Punjab, India. The samples were analysed for dissolved radon using scintillation cell method. Laser fluorimetry was used for measurement of uranium concentration. Correlation analysis of radon and uranium concentrations and salinity and total dissolved solids with uranium was carried out. The uranium concentration in water samples varied from a minimum value of 1.53 ± 0.06 mg m−3 to 50.2 ± 0.08 mg m−3 with a geometric mean value of 14.85 mg m−3. The radon concentration in water varied from a minimum value of 0.34 ± 0.07 kBq m−3 to a maximum value of 3.84 ± 0.48 kBq m−3 with a geometric mean value of 1.46 kBq m−3. Ingestion dose to local population, due to radon and uranium in drinking water, for different age categories, was computed and results are being reported in this paper.
The uranium concentration in the drinking water of the residents of the Jaipur and Ajmer districts of Rajasthan has been measured for exposure assessment. The daily intake of uranium from the drinking water for the residents of the study area is found to vary from 0.4 to 123.9 μg per day. For the average uranium ingestion rate of 35.2 μg per day for a long term exposure period of 60 years, estimations have been made for the retention of uranium in different body organs and its excretion with time using ICRP's biokinetic model of uranium. Radioactive and chemical toxicity of uranium has been reported and discussed in detail in the present manuscript.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.