Primary aldosteronism (PA) is the most common cause of secondary hypertension with a prevalence of 5–10% in unreferred hypertensive patients. Aldosterone producing adenomas (APAs) constitute a large proportion of PA cases and represent a surgically correctable form of the disease. The WNT signaling pathway is activated in APAs. In other tumors, a frequent cause of aberrant WNT signaling is mutation in the CTNNB1 gene coding for β-catenin. Our objective was to screen for CTNNB1 mutations in a well-characterized cohort of 198 APAs. Somatic CTNNB1 mutations were detected in 5.1% of the tumors, occurring mutually exclusive from mutations in KCNJ5, ATP1A1, ATP2B3 and CACNA1D. All of the observed mutations altered serine/threonine residues in the GSK3β binding domain in exon 3. The mutations were associated with stabilized β-catenin and increased AXIN2 expression, suggesting activation of WNT signaling. By CYP11B2 mRNA expression, CYP11B2 protein expression, and direct measurement of aldosterone in tumor tissue, we confirmed the ability for aldosterone production. This report provides compelling evidence that aberrant WNT signaling caused by mutations in CTNNB1 occur in APAs. This also suggests that other mechanisms that constitutively activate the WNT pathway may be important in APA formation.
Context: Up to 60% of pheochromocytoma (PCC) and paraganglioma (PGL) are associated with either somatic or germline mutations in established PCC and PGL susceptibility loci. Most unexplained cases are characterized by an increased activity of the RAS/RAF/ERK signaling pathway. Mutations in RAS subtypes H, K, and N are common in human cancers; however, previous studies have been inconsistent regarding the mutational status of RAS in PCC and PGL. Objectives:The aim of this study was to identify novel disease causing genes in PCC and PGL tumors.Design, setting, and participants: Four benign and sporadic PCC and PGL tumors were subjected to whole exome sequencing using the Illumina HiSeq Platform. Sequences were processed by CLC genomics 4.9 bioinformatics software and the acquired list of genetic variants was filtered against the Catalogue of Somatic Mutations in Cancer database. Findings were validated in an additional 78 PCC and PGL tumor lesions.Results: Exome sequencing identified 2 cases with somatic mutations in the H-RAS. In total, 6.9% (n ϭ 4/58) of tumors negative for mutations in major PCC and PGL loci had mutations in H-RAS: G13R, Q61K, and Q61R. There were 3 PCC and 1 PGL; all had sporadic presentation with benign tumor characteristics and substantial increases in norepinephrine and/or epinephrine. H-RAS tumors were exclusively found in male patients (P ϭ .007). Conclusions:We identified recurrent somatic H-RAS mutations in pheochromocytoma and paraganglioma. Tumors with H-RAS mutations had activation of the RAS/RAF/ERK signaling pathway and were associated with male PCC patients having benign and sporadic disease characteristics. H-RAS could serve as a prognostic and predictive marker as well as a novel therapeutic target. (J Clin Endocrinol Metab 98: E1266 -E1271, 2013)
Aldosterone-producing adenomas (APAs) are found in 1.5-3.0% of hypertensive patients in primary care and can be cured by surgery. Elucidation of genetic events may improve our understanding of these tumors and ultimately improve patient care. Approximately 40% of APAs harbor a missense mutation in the KCNJ5 gene. More recently, somatic mutations in CACNA1D, ATP1A1 and ATP2B3, also important for membrane potential/intracellular Ca(2) (+) regulation, were observed in APAs. In this study, we analyzed 165 APAs for mutations in selected regions of these genes. We then correlated mutational findings with clinical and molecular phenotype using transcriptome analysis, immunohistochemistry and semiquantitative PCR. Somatic mutations in CACNA1D in 3.0% (one novel mutation), ATP1A1 in 6.1% (six novel mutations) and ATP2B3 in 3.0% (two novel mutations) were detected. All observed mutations were located in previously described hotspot regions. Patients with tumors harboring mutations in CACNA1D, ATP1A1 and ATP2B3 were operated at an older age, were more often male and had tumors that were smaller than those in patients with KCNJ5 mutated tumors. Microarray transcriptome analysis segregated KCNJ5 mutated tumors from ATP1A1/ATP2B3 mutated tumors and those without mutation. We observed significant transcription upregulation of CYP11B2, as well as the previously described glomerulosa-specific gene NPNT, in ATP1A1/ATP2B3 mutated tumors compared to KCNJ5 mutated tumors. In summary, we describe novel somatic mutations in proteins regulating the membrane potential/intracellular Ca(2) (+) levels, and also a distinct mRNA and clinical signature, dependent on genetic alteration.
BackgroundAbout 60% of Pheochromocytoma (PCC) and Paraganglioma (PGL) patients have either germline or somatic mutations in one of the 12 proposed disease causing genes; SDHA, SDHB, SDHC, SDHD, SDHAF2, VHL, EPAS1, RET, NF1, TMEM127, MAX and H-RAS. Selective screening for germline mutations is routinely performed in clinical management of these diseases. Testing for somatic alterations is not performed on a regular basis because of limitations in interpreting the results.AimThe purpose of the study was to investigate genetic events and phenotype correlations in a large cohort of PCC and PGL tumours.MethodsA total of 101 tumours from 89 patients with PCC and PGL were re-sequenced for a panel of 10 disease causing genes using automated Sanger sequencing. Selected samples were analysed with Multiplex Ligation-dependent Probe Amplification and/or SNParray.ResultsPathogenic genetic variants were found in tumours from 33 individual patients (37%), 14 (16%) were discovered in constitutional DNA and 16 (18%) were confirmed as somatic. Loss of heterozygosity (LOH) was observed in 1/1 SDHB, 11/11 VHL and 3/3 NF1-associated tumours. In patients with somatic mutations there were no recurrences in contrast to carriers of germline mutations (P = 0.022). SDHx/VHL/EPAS1 associated cases had higher norepinephrine output (P = 0.03) and lower epinephrine output (P<0.001) compared to RET/NF1/H-RAS cases.ConclusionSomatic mutations are frequent events in PCC and PGL tumours. Tumour genotype may be further investigated as prognostic factors in these diseases. Growing evidence suggest that analysis of tumour DNA could have an impact on the management of these patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.