SUMMARY Adeno-associated viral vectors (AAV) have emerged as a gene delivery platform with demonstrated safety and efficacy in a handful of clinical trials for monogenic disorders. However, limitations of the current generation vectors often prevent broader application of AAV gene therapy. Efforts to engineer AAV have been hampered by a limited understanding of the structure-function relationship of the complex multimeric icosahedral architecture of the particle. To develop additional reagents pertinent to further our insight into AAV, we inferred evolutionary intermediates of the viral capsid using ancestral sequence reconstruction. In silico derived sequences were synthesized de novo and characterized for biological properties relevant to clinical applications. This effort led to the generation of 9 functional putative ancestral AAVs and the identification of Anc80, the predicted ancestor of the widely studied AAV serotypes 1, 2, 8 and 9 as a highly potent in vivo gene therapy vector for targeting liver, muscle, and retina.
Adeno-associated virus (AAV) vectors are promising clinical candidates for therapeutic gene transfer, and a number of AAV-based drugs may emerge on the market over the coming years. To insure the consistency in efficacy and safety of any drug vial that reaches the patient, regulatory agencies require extensive characterization of the final product. Identity is a key characteristic of a therapeutic product, as it ensures its proper labeling and batch-to-batch consistency. Currently, there is no facile, fast, and robust characterization assay enabling to probe the identity of AAV products at the protein level. Here, we investigated whether the thermostability of AAV particles could inform us on the composition of vector preparations. AAV-ID, an assay based on differential scanning fluorimetry (DSF), was evaluated in two AAV research laboratories for specificity, sensitivity, and reproducibility, for six different serotypes (AAV1, 2, 5, 6.2, 8, and 9), using 67 randomly selected AAV preparations. In addition to enabling discrimination of AAV serotypes based on their melting temperatures, the obtained fluorescent fingerprints also provided information on sample homogeneity, particle concentration, and buffer composition. Our data support the use of AAV-ID as a reproducible, fast, and low-cost method to ensure batch-to-batch consistency in manufacturing facilities and academic laboratories.
Aging may increase apoptotic events and the susceptibility of the central nervous system to apoptosis. Calorie restriction has been shown to have neuroprotective effects, but the mechanisms in vivo are unknown. We investigated apoptosis and apoptotic regulatory proteins in the brain frontal cortex of 12-month-old ad libitum fed, 26-month-old ad libitum fed, and 26-month-old calorie-restricted (CR) male Fischer 344 rats (CR = 40% restricted compared to ad libitum). We found that specific DNA fragmentation indicative of apoptosis was increased with age (+124%) in the cortices of the brain and that calorie restriction attenuated this increase significantly (-36%). We determined levels of ARC (apoptosis repressor with a caspase recruitment domain), which inhibits caspase-2 activity and also attenuates cytochrome c release from the mitochondria. We found a significant age-associated decline in ARC level, which was attenuated in the brains of the CR rats. In accordance with the changes in ARC expression observed, calorie restriction attenuated the increases in cytosolic cytochrome c and caspase-2 activity with age and suppressed the age-associated rise in cleaved caspase-9 and cleaved caspase-3. However, neither age nor calorie restriction had any effect on caspase-3 and caspase-9 activities. This data provides evidence for an increased incidence of apoptosis in rat brain with age and evidence that calorie restriction has the ability to attenuate this. Furthermore, our data suggest that calorie restriction provides neuroprotection through ARC by suppressing cytochrome c release and caspase-2 activity.
Anti-adeno-associated viral vector (AAV) neutralizing antibodies (NAbs) can ablate efficacy of transgene expression following intravenous vector administration. This observation in both preclinical and clinical trials has led to exclusion of NAb-positive patients from receiving AAV gene therapy. AAV drug development includes selection of capsids with lower NAb seroprevalence that also possess other favorable traits. Often a limited number of healthy volunteers are screened to gauge NAb seroprevalence. However, limited data sets can be biased leading to inaccurate estimates of NAb incidence. In this study, we evaluated AAV NAbs against a panel of vectors among healthy donors within the United States. While the overall seroprevalence against most AAVs was lower, we did observe increased NAb incidence among black and Hispanic donors. These findings of increased NAb seroprevalence among the minority races were confirmed in a second set of donors who also demonstrated higher seroprevalence among these races. Interracial- and intraracial differences within genders were also observed among donors. The increased incidence of AAV NAb among racial minorities was unexpected. Our findings underscore the need for removing bias in sample data sets and evaluating seroprevalence within the patient population while selecting capsids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.