The article presents a microstrip patch (MSA) fed high gain circularly polarized metasurface cavity (CP‐MSC) antenna using a planar progressively‐phased‐reflector and a transmissive linear to circular polarization conversion metascreen. The bottom metasurface reflector consists of a remodeled Jerusalem cross to obtain 2π reflection phase variation. Linear to circular polarization conversion is achieved by a hexagonal ring based meta‐element with high transmission and bellow 3 dB axial ratio from 9.5 to 10.5 GHz. Simulated and measured results of assembled CP‐MSC antenna with MSA are in good agreement. The gain of the proposed cavity antenna with 10 and 10.5 GHz MSA are 14.9 and 16.3 dBi, respectively. Below 3 dB AR throughout the operating band denotes significant circular polarization performance of the proposed antenna.
Recently, the introduction of surface phase in Snell's law and Huygens' phenomena leads to ultrathin phased surfaces which can tailor the transmission and scattering of the incident wavefront in many ways. In this article, a remodeled Jerusalem cross used as the meta-element whose geometrical parameters are varied to obtain 360 • phase variation and a 3-bit quantization is presented to design phase coded surfaces to manipulate (focusing and splitting) normally incident beam. Further, two 3-bit phase quantized supercells of approximately 2λ length and width are proposed and simulated (3 × 3 matrix arrangement) to test and compare the scattering properties with traditional chessboard type supercell. Obtained simulated results show diffused reflections for both the models and reduced intensity of four corner lobes in comparison to chessboard supercells (at θ = 30 • and φ = 45 •). Experimentally recorded monostatic RCS of model-2 prototype has a close agreement with the simulated results and more than 10 dBsm RCS reduction observed from 9 GHz-11 GHz.
This study proposes an ultra‐wideband (UWB) metasurface‐based beam‐switching antenna system. A coplanar (CP) waveguide fed slot antenna (with 49% operating bandwidth) is coupled with a hexagonal metallic aperture to generate CP beam in the 10.2–10.8 GHz band. An octagonal split ring inclusion‐based meta‐element is designed to achieve 2π transmission phase variation with near‐unity magnitude. The principle of the Pancharatnam–Berry metasurface is used to design an offset metasurface superstrate for tilting the main beam of the UWB antenna for the CP band. Measured results (S11, axial ratio, and radiation pattern) agree well with full‐wave simulations. The fabricated X‐band UWB aperture coupled antenna system uses the metasurface superstrate to achieve a broadside beam for the lower band and tilted beam for the upper band. This antenna system holds promise for next‐generation vehicular and satellite communication applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.