In the modern world, the systems getting smarter leads to a rapid increase in the usage of electricity, thereby increasing the load on the grids. The utilities are forced to meet the demand and are under stress during the peak hours due to the shortfall in power generation. The abovesaid deficit signifies the explicit need for a strategy that reduces the peak demand by rescheduling the load pattern, as well as reduces the stress on grids. Demand-side management (DSM) uses several algorithms for proper reallocation of loads, collectively known as demand response (DR). DR strategies effectively culminate in monetary benefits for customers and the utilities using dynamic pricing (DP) and incentive-based procedures. This study attempts to analyze the DP schemes of DR such as time-of-use (TOU) and real-time pricing (RTP) for different load scenarios in a smart grid (SG). Centralized and distributed algorithms are used to analyze the price-based DR problem using RTP. A techno-economic analysis was performed by using particle swarm optimization (PSO) and the strawberry (SBY) optimization algorithms used in handling the DP strategies with 109, 1992, and 7807 controllable industrial, commercial, and residential loads. A better optimization algorithm to go along with the pricing scheme to reduce the peak-to-average ratio (PAR) was identified. The results demonstrate that centralized RTP using the SBY optimization algorithm helped to achieve 14.80%, 21.7%, and 21.84% in cost reduction and outperformed the PSO.
Demand response programs can effectively handle the smart grid’s increasing energy demand and power imbalances. In this regard, price-based DR (PBDR) and incentive-based DR (IBDR) are two broad categories of demand response in which incentives for consumers are provided in IBDR to reduce their demand. This work aims to implement the IBDR strategy from the perspective of the service provider and consumers. The relationship between the different entities concerned is modelled. The incentives offered by the service provider (SP) to its consumers and the consumers’ reduced demand are optimized using Stackelberg–particle swarm optimization (SPSO) as a bi-level problem. Furthermore, the system with a grid operator, the industrial consumers of the grid operator, the service provider and its consumers are analyzed from the service provider’s viewpoint as a tri-level problem. The benefits offered by the service provider to its customers, the incentives provided by the grid operator to its industrial customers, the reduction of customer demand, and the average cost procured by the grid operator are optimized using SPSO and compared with the Stackelberg-distributed algorithm. The problem was analyzed for an hour and 24 h in the MATLAB environment. Besides this, sensitivity analysis and payment analysis were carried out in order to delve into the impact of the demand response program concerning the change in customer parameters.
Microgrid is an effective means of integrating multiple energy sources of distributed energy to improve the economy, stability and security of the energy systems. A typical microgrid consists of Renewable Energy Source (RES), Controllable Thermal Units (CTU), Energy Storage System (ESS), interruptible and uninterruptible loads. From the perspective of the generation, the microgrid should be operated at the minimum operating cost, whereas from the perspective of demand, the energy cost imposed on the consumer should be minimum. The main key in controlling the relationship of microgrid with the utility grid is managing the demand. An Energy Management System (EMS) is required to have real time control over the demand and the Distributed Energy Resources (DER). Demand Side Management (DSM) assesses the actual demand in the microgrid to integrate different energy resources distributed within the grid. With these motivations towards the operation of a microgrid and also to achieve the objective of minimizing the total expected operating cost, the DER schedules are optimized for meeting the loads. Demand Response (DR) a part of DSM is integrated with MG islanded mode operation by using Time of Use (TOU) and Real Time Pricing (RTP) procedures. Both TOU and RTP are used for shifting the controllable loads. RES is used for generator side cost reduction and load shifting using DR performs the load side control by reducing the peak to average ratio. Four different cases with and without the PV, wind uncertainties and ESS are analyzed with Demand Response and Unitcommittment (DRUC) strategy. The Strawberry (SBY) algorithm is used for obtaining the minimum operating cost and to achieve better energy management of the Microgrid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.