Significance This paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the United States. Results show high variation in accuracy between and within stand-alone models and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public-health action.
This article presents an overview of the state-of-the art in modeling and simulation, and studies to which extent current simulation technologies can effectively support the design process. For simulation-based design, modeling languages and simulation environments must take into account the special characteristics of the design process. For instance, languages should allow models to be easily updated and extended to accommodate the various analyses performed throughout the design process. Furthermore, the simulation software should be well integrated with the design tools so that designers and analysts with expertise in different domains can effectively collaborate on the design of complex artifacts. This review focuses in particular on modeling for design of multi-disciplinary engineering systems that combine continuous time and discrete time phenomena.
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.org/) collected, disseminated, and synthesized tens of millions of specific predictions from more than 90 different academic, industry, and independent research groups. A multi-model ensemble forecast that combined predictions from dozens of different research groups every week provided the most consistently accurate probabilistic forecasts of incident deaths due to COVID-19 at the state and national level from April 2020 through October 2021. The performance of 27 individual models that submitted complete forecasts of COVID-19 deaths consistently throughout this year showed high variability in forecast skill across time, geospatial units, and forecast horizons. Two-thirds of the models evaluated showed better accuracy than a naïve baseline model. Forecast accuracy degraded as models made predictions further into the future, with probabilistic error at a 20-week horizon 3-5 times larger than when predicting at a 1-week horizon. This project underscores the role that collaboration and active coordination between governmental public health agencies, academic modeling teams, and industry partners can play in developing modern modeling capabilities to support local, state, and federal response to outbreaks. Significance Statement This paper compares the probabilistic accuracy of short-term forecasts of reported deaths due to COVID-19 during the first year and a half of the pandemic in the US. Results show high variation in accuracy between and within stand-alone models, and more consistent accuracy from an ensemble model that combined forecasts from all eligible models. This demonstrates that an ensemble model provided a reliable and comparatively accurate means of forecasting deaths during the COVID-19 pandemic that exceeded the performance of all of the models that contributed to it. This work strengthens the evidence base for synthesizing multiple models to support public health action.
This article introduces the concept of combining both form (CAD models) and behavior (simulation models) of mechatronic system components into component objects. By connecting these component objects to each other through their ports, designers can create both a system-level design description and a virtual prototype of the system. This virtual prototype, in turn, can provide immediate feedback about design decisions by evaluating whether the functional requirements are met in simulation. To achieve the composition of behavioral models, we introduce a port-based modeling paradigm. The port-based models are reconfigurable, so that the same physical component can be simulated at multiple levels of detail without having to modify the systemlevel model description. This allows the virtual prototype to evolve during the design process, and to achieve the accuracy required for the simulation experiments at each design stage. To maintain the consistency between the form and behavior of component objects, we introduce parametric relations between these two descriptions. In addition, we develop algorithms that determine the type and parameter values of the lower pair interaction models; these models depend on the form of both components that are interacting. This article presents the initial results of our approach. The discussion is limited to high-level system models consisting of components and lumped component interactions described by differential algebraic equations. Expanding these concepts to finite element models and distributed interactions is left for future research. Our composable simulation and design environment has been implemented as a distributed system in Java and Cϩϩ, enabling multiple users to collaborate on the design of a single system. Our current implementation has been applied to a variety of systems ranging from consumer electronics to electrical train systems. We illustrate its functionality and use with a design scenario.
The COVID-19 pandemic has highlighted the global need for reliable models of disease spread. We propose an AI-augmented forecast modeling framework that provides daily predictions of the expected number of confirmed COVID-19 deaths, cases, and hospitalizations during the following 4 weeks. We present an international, prospective evaluation of our models’ performance across all states and counties in the USA and prefectures in Japan. Nationally, incident mean absolute percentage error (MAPE) for predicting COVID-19 associated deaths during prospective deployment remained consistently <8% (US) and <29% (Japan), while cumulative MAPE remained <2% (US) and <10% (Japan). We show that our models perform well even during periods of considerable change in population behavior, and are robust to demographic differences across different geographic locations. We further demonstrate that our framework provides meaningful explanatory insights with the models accurately adapting to local and national policy interventions. Our framework enables counterfactual simulations, which indicate continuing Non-Pharmaceutical Interventions alongside vaccinations is essential for faster recovery from the pandemic, delaying the application of interventions has a detrimental effect, and allow exploration of the consequences of different vaccination strategies. The COVID-19 pandemic remains a global emergency. In the face of substantial challenges ahead, the approach presented here has the potential to inform critical decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.