The deformation of a weakly conducting, ‘leaky dielectric’, drop in a density matched, immiscible weakly conducting medium under a uniform direct current (DC) electric field is quantified computationally. We exclusively consider prolate drops, for which the drop elongates in the direction of the applied field. Furthermore, for the majority of this study, we assume the drop and medium to have equal viscosities. Using axisymmetric boundary integral computations, we delineate drop deformation and breakup regimes in the $Ca_{E}-Re_{E}$ parameter space, where $Ca_{E}$ is the electric capillary number (ratio of the electric to capillary stresses); and $Re_{E}$ is the electric Reynolds number (ratio of charge relaxation to flow time scales), which characterizes the strength of surface charge convection along the interface. For so-called ‘prolate A’ drops, where the surface charge is convected towards the ‘poles’ of the drop, we demonstrate that increasing $Re_{E}$ reduces the critical capillary number for breakup. Moreover, surface charge convection is the cause of an abrupt transition in the breakup mode of a drop from end pinching, where the drop elongates and develops bulbs at its ends that eventually detach, to a breakup mode characterized by the formation of conical ends. On the contrary, the deformation of ‘prolate B’ drops, where the surface charge is convected away from the poles, is essentially unaffected by the magnitude of $Re_{E}$.
Colloidal dispersions are known to display a fascinating network of cracks on drying. We probe the fracture mechanics of free-standing films of aqueous polymer-particle dispersions. Thin films of the dispersion are cast between a pair of plain steel wires and allowed to dry under ambient conditions. The strain induced on the particle network during drying is relieved by cracking. The stress which causes the films to crack has been calculated by measuring the deflection of the wires. The critical cracking stress varied inversely to the two-thirds' power of the film thickness. We also measure the velocity of the tip of a moving crack. The motion of a crack has been modeled as a competition between the release of the elastic energy stored in the particle network, the increase in surface energy as a result of the growth of a crack, the rate of viscous dissipation of the interstitial fluid and the kinetic energy associated with a moving crack. There is fair agreement between the measured crack velocities and predictions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.