Co-transformation of Oryza sativa L. var. Pusa Basmati1 was done using an Agrobacterium tumefaciens strain harbouring a single-copy cointegrate vector and a multi-copy binary vector in the same cell. The T-DNA of the cointegrate vector pGV2260::pSSJ1 carried the hygromycin phosphotransferase (hph) and beta-glucuronidase (gus) genes. The binary vector pCam-chi11, without a plant selectable marker gene, harboured the rice chitinase (chi11) gene under maize ubiquitin promoter. Co-transformation of the gene of interest (chi11) with the selectable marker gene (hph) occurred in 4 out of 20 T(0) plants (20%). Segregation of hph from chi11 was accomplished in two (CoT6 and CoT23) of the four co-transformed plants in the T(1) generation. The selectable marker-free (SMF) lines CoT6 and CoT23 harboured single copies of chi11. Homozygous SMF T(2) plants were established in the lines CoT6 and CoT23. Northern and Western blot analysis of the homozygous SMF lines showed high level of transgene expression. In comparison to untransformed controls, chitinase specific activity was 66- and 22-fold higher in the homozygous SMF T(2) plants of lines CoT6 and CoT23, respectively. The lines CoT6 and CoT23 exhibited 38 and 40% reduction in sheath blight disease, respectively.
Rice chitinase (chi11) and tobacco osmotin (ap24) genes, which cause disruption of fungal cell wall and cell membrane, respectively, were stacked in transgenic rice to develop resistance against the sheath blight disease. The homozygous marker-free transgenic rice line CoT23 which harboured the rice chi11 transgene was sequentially re-transformed with a second transgene ap24 by co-transformation using an Agrobacterium tumefaciens strain harbouring a single-copy cointegrate vector pGV2260::pSSJ1 and a multi-copy binary vector pBin19∆nptII-ap24 in the same cell. pGV2260::pSSJ1 T-DNA carried the hygromycin phosphotransferase (hph) and β-glucuronidase (gus) genes. pBin19∆nptII-ap24 T-DNA harboured the tobacco osmotin (ap24) gene. Co-transformation of the gene of interest (ap24) with the selectable marker gene (SMG, hph) occurred in 12 out of 18 T(0) plants (67%). Segregation of hph from ap24 was accomplished in the T(1) generation in one (line 11) of the four analysed co-transformed plants. The presence of ap24 and chi11 transgenes and the absence of the hph gene in the SMG-eliminated T(1) plants of the line 11 were confirmed by DNA blot analyses. The SMG-free transgenic plants of the line 11 harboured a single copy of the ap24 gene. Homozygous, SMG-free T(2) plants of the transgenic line 11 harboured stacked transgenes, chi11 and ap24. Northern blot analysis of the SMG-free plants revealed constitutive expression of chi11 and ap24. The transgenic plants with stacked transgenes displayed high levels of resistance against Rhizoctonia solani. Thus, we demonstrate the development of transgene-stacked and marker-free transgenic rice by sequential Agrobacterium-mediated co-transformation with the same SMG.
Plant lectins are the heterogenous group of glycoproteins extensively studied for their potent insecticidal property against Hemipteran pests. In this present study, the full-length cDNA of monocot mannose-binding insecticidal lectin gene was isolated from Allium ascalonicum leaves. The isolated Allium ascalonicum Lectin (AAL) gene was cloned in pGEM-T vector, sequenced and the sequence was submitted to GenBank (KM096570.1). Sequence analysis revealed a 468 bp open reading frame (ORF) encoding a putative 155 amino acids agglutinin precursor. Multiple sequence alignment and phylogenetic analysis of AAL amino acid with those of 30 other Mannose binding lectin (MBL) sequences in NCBI revealed a high similarity of 85-95% indicating that AAL is a member of the MBL super family and forms a cluster with other onion lectins. Secondary structure prediction and the homology modeling showed that AAL protein possess predominantly β-sheets and three potential mannose-binding motifs consisting of 5 amino acid residues QDNVY like other GNA lectins. The results of the insilico analysis predict that the Allium ascalonicum lectin gene can be another potent insecticidal protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.