Deep learning (DL) and machine learning (ML) have a pivotal role in logistic supply chain management and smart manufacturing with proven records. The ability to handle large complex data with minimal human intervention made DL and ML a success in the healthcare systems. In the present healthcare system, the implementation of ML and DL is extensive to achieve a higher quality of service and quality of health to patients, doctors, and healthcare professionals. ML and DL were found to be effective in disease diagnosis, acute disease detection, image analysis, drug discovery, drug delivery, and smart health monitoring. This work presents a state-of-the-art review on the recent advancements in ML and DL and their implementation in the healthcare systems for achieving multi-objective goals. A total of 10 papers have been thoroughly reviewed that presented novel works of ML and DL integration in the healthcare system for achieving various targets. This will help to create reference data that can be useful for future implementation of ML and DL in other sectors of healthcare system.
The development of wireless sensors and wearable devices has led health care services to the new paramount. The extensive use of sensors, nodes, and devices in health care services generate an enormous amount of health data which is generally unstructured and heterogeneous. Many generous methods and frameworks have been developed for efficient data exchange frameworks, security protocols for data security and privacy. However, very less emphasis has been devoted to structuring and interpreting health data by fuzzy logic systems. The wireless sensors and device performances are affected by the remaining battery/energy, which induces uncertainties, noise, and errors. The classification, noise removal, and accurate interoperation of health data are critical for taking accurate diagnosis and decision making. Fuzzy logic system and algorithms were found to be effective and energy efficient in handling the challenges of raw medical data uncertainties and data management. The integration of fuzzy logic is based on artificial intelligence, neural network, and optimization techniques. The present work entails the review of various works which integrate fuzzy logic systems and algorithms for enhancing the performance of healthcare-related apps and framework in terms of accuracy, precision, training, and testing data capabilities. Future research should concentrate on expanding the adaptability of the reasoning component by incorporating other features into the present cloud architecture and experimenting with various machine learning methodologies.
The internet, like automated tools, has grown to better our daily lives. Interacting IoT products and cyber-physical systems. Generative Adversarial Network's (GANs') generator and discriminator may have different inputs, allowing feedback in supervised models. AI systems use neural networks, and adversarial networks analyse neural network feedback. Cyber-physical production systems (CPPS) herald intelligent manufacturing . CPPS may launch cross-domain attacks since the virtual and real worlds are interwoven. This project addresses enhanced Cyber-Physical System(CPS) feedback structure for Denial-of-Service (DoS) defence . Comparing sensor-controller and controller-to-actuator DoS attack channels shows a swapping system modelling solution for the CPS's complex response feedback. Because of the differential in bandwidth between the two channels and the suspects' limited energy, one person can only launch so many DoS assaults. DoS attacks are old and widespread. Create a layered switching paradigm that employs packet-based transfer techniques to prevent assaults. The discriminator's probability may be used to assess whether feedback samples came from real or fictional data. Cognitive feedback can assess GA feedback data.
Wireless sensor network (WSN) is an emerging technology used in emergency scenarios. There are a number of possible threats to WSNs because they use unsupervised IP addresses. Securing networks with unattended sensors is a real challenge nowadays. Sensor nodes lack power and storage, making them incompatible with normal security checks. It will be vital to make advancements in sensor network architecture and protocol design. There will be more vulnerability to attack if there is a lack of security. Especially, one key attack is node replication which induces the sensor node to acts as an original node, collecting data from the network and sending it to the attacker. In dynamic WSN, detecting an assault is difficult to find replica nodes. Therefore, this paper proposes a Strategic Security System (SSS) to discover replica nodes in static and dynamic distributed WSNs. It is mainly focused on enhancing detection accuracy, time delay, and communication overhead. The present system includes Single Stage Memory Random Walk with Network Division (SSRWND) and a Random-walk-based approach to detect clone attacks (RAWL). The proposed system has less memory and better detection accuracy.
Agribusiness employs more than 66 percent of India’s rural population and is the country’s economic backbone. Beat crop growth is essential for practical farming since it increases soil diversity and actual design, and it may be grown in blended frameworks. Crop growth rates, applicability, and yields have not improved significantly over time in the United States. Crops are defined by their seasonality, derived nature of demand, and relatively inelastic pricing. The general purpose of this research is to demonstrate the usefulness of price forecasting for agricultural prices and validate it for rice, which is consumed more in Indian states, for the year 2022, using time series data from 2016 to 2021. Every year, data for 50 days is collected and multiplied. The range of ten and its multiple is used for predicting. The results were obtained through the use of univariate analysis. To develop grain price estimates, researchers used Autoregressive Integrated Moving Average (ARIMA) methods, and the precision of the forecasts was examined using conventional mean square error (MSE) and mean absolute percentage error (MAPE) standards. As proven by the outcomes of ARIMA price predictions, the ARIMA model’s efficacy as a tool for price forecasting was effectively demonstrated by realistic models of projected prices for 2020. Because the MSA and MAPE values were lower, the forecast was more accurate. In addition, the price forecasting in this model is dependent on government incentives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.