Brassica spp., commonly known as rapeseed-mustard, plays a significant role in the Indian economy by providing edible oils, vegetables, condiments and animal feed. Globally, India holds second and third position in rapeseed-mustard area under cultivation and production, respectively. However, anthropogenically accelerated climate change thwarts yield potential of rapeseed-mustard by employing abiotic (drought, flood, temperature variation and salinity) and biotic (disease and insects) stresses. Various approaches such as molecular breeding, pre-breeding, −omics and biotechnological interventions have been used to develop varieties for improved yield and oil quality, climate resilient and resistance or tolerance to abiotic and biotic stresses. In this context, this chapter highlighted the different cytoplasmic male sterility (CMS) sources and their potential use for hybrid development. At the end, this chapter also enlisted salient achievement by the government and non-government institutes and briefly described the future perspective for improvement of rapeseed-mustard in India.
Seed coat colour is an important trait in Indian mustard. Breeding for seed coat colour needs precise knowledge of mode of inheritance and markers linked to it. The present study was focussed on genetics and development of functional markers for seed coat colour. F1s (direct and reciprocal) and F2 populations were developed by crossing two contrasting parents for seed coat colour (DRMRIJ-31, brown seeded and RLC-3, yellow seeded). Phenotypic results have shown that the seed coat colour trait was under the influence of maternal effect and controlled by digenic-duplicate gene action. Further, Bju.TT8 homologs of both parents (DRMRIJ-31 and RLC-3) were cloned and sequenced. Sequencing results of Bju.TT8 homologs revealed that in RLC-3, gene Bju.ATT8 had an insertion of 1279bp in the 7th exon; whereas, gene Bju.BTT8 had an SNP (C→T) in the 7th exon. These two mutations were found to be associated with yellow seed coat colour. Using sequence information, functional markers were developed for both Bju.TT8 homologs, validated on F2 population and were found highly reliable with no recombination between the markers and the phenotype. Further, these markers were subjected to a germplasm assembly of Indian mustard, and their allelic combination for the seed coat colour genes has been elucidated. The comparative genomics of TT8 genes revealed high degree of similarity between and across the Brassica species, and the respective diploid progenitors in tetraploid Brassica species are the possible donors of TT8 homologs. This study will help in the marker-assisted breeding for seed coat colour, and aid in understanding seed coat colour genetics more precisely.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.