Nifedipine is a dihydropyridine calci channel blocking agent belongs to biopharmaceutical classification system (BCS) class-II mainly applied in the treatment of hypertension and angina-pectoris. The objective of this work is to improve the solubility and dissolution rate of nifedipine by formulating into a solid-self micro emulsifying drug delivery system (solid smedds). Methods: Oil, Surfactant, and cosurfactant were selected by solubility screening study. For the determination of the best emulsion region, a pseudo ternary diagram was prepared. Based on solubility castor oil, tween 80 and polyethylene glycol (PEG) 400 was selected in which SCOSmix (a mixture of surfactant and cosurfactant) was 1:1. Thermodynamic stability study was performed for the determination of stable smedds formulation. These formulations were evaluated for self emulsification time, drug content analysis, robustness to dilution test, particle size analysis, and in vitro diffusion study. The optimized formulation was selected for formulating into solid-smedds by using aerosil 200 at a different ratio. SCF9L (0.65:1) was selected due to its good flow property. Then it was evaluated for particle size analysis, drug content study, differential scanning calorimetry (DSC), X-Ray Diffraction study (XRD), fourier transform infrared spectroscopy (FTIR) Scanning Electron Microscopy study (SEM) analysis, and in vitro dissolution study. Results: DSC and XRD result shows that the drug within the formulation was in the amorphous state. From the SEM analysis, the texture of powder showed a uniform granular structure, and there was no incompatibility between drugs. Excipients was observed from ftir study. From the in vitro dissolution study, it improved the dissolution rate of nifedipine, which was 98.68% of drug release, where pure drug release only 6.75%.
Eprosartan Mesylate (EM), an angiotensin II receptor blocker used in the treatment of high blood pressure. But poor solubility and bioavailability (13%) of eprosartan mesylate is a major challenging factor for improving its drug release rate. The main objective of the present work to develop and characterize self micro emulsifying drug delivery system of eprosartan mesylate by using compatible oil, surfactant and co-surfactant. For the selection of oil, surfactant and cosurfactant, solubility screening studies has been carried out. The nine formulations are prepared using peppermint oil, tween 80 and PEG 400. A pseudo ternary phase diagram was prepared to determine the self emulsion region. Four optimized formulations were prepared at 1:1 ratio(a mixture of surfactant and cosurfactant). These four formulations were evaluated for self-emulsification time, droplet size measurement, drug content analysis robustness to dilution test, viscosity analysis, f.t.i.r. The study and in-vitro diffusion studies. The ratio of scosmix (a mixture of surfactant and cosurfactant) of optimized formulation (pf5) was varied to pfa1 (2:1), pf2 (3:1), pfa3 (1:2) and compared with pure drug. The formulation having pfa1 (2:1) shown drug release of 93.13 % in 330 minutes where as pure drug showed a drug release of 54.51% in 330 minutes. So the prepared SMEDDS formulations were efficient and better than the pure drug, and it followed Korsmeyer pappes due to highest r2 value followed by Hixon crowel. It was concluded that incorporation of eprosartan mesylate in selfmicroemulsifying system is a great potential for improving the solubility and dissolution rate of eprosartan mesylate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.