The severity of the recent pandemic and the absence of any specific medication impelled the identification of existing drugs with potential in the treatment of Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). Curcumin, known for its pharmacological abilities especially as an anti-inflammatory agent, can be hypothesized as a potential candidate in the therapeutic regimen. COVID-19 has an assorted range of pathophysiological consequences, including pulmonary damage, elevated inflammatory response, coagulopathy, and multi-organ damage. This review summarizes the several evidences for the pharmacological benefits of curcumin in COVID-19-associated clinical manifestations. Curcumin can be appraised to hinder cellular entry, replication of SARS-CoV-2, and to prevent and repair COVID-19-associated damage of pneumocytes, renal cells, cardiomyocytes, hematopoietic stem cells, etc. The modulation and protective effect of curcumin on cytokine storm-related disorders are also discussed. Collectively, this review provides grounds for its clinical evaluation in the therapeutic management of SARS-CoV-2 infection.
Expression of various cytochrome P450s (CYPs) in mammalian brain cells is well documented. However, such studies are hampered in neural/glial cells of human origin due to nonavailability of human brain cells. To address this issue, we investigated the expression and inducibility of CYP2C8 and CYP3A4 and their responsiveness against cyclophosphamide (CPA) and organophosphorus pesticide monocrotophos (MCP), a known developmental neurotoxicant in human neural (SH-SY5Y) and glial (U373-MG) cell lines. CPA induced significant expression of CYP2C8 and CYP3A4 in both types of cells in a time-dependent manner. Neural cell line exhibited relatively higher constitutive and inducible expression of CYPs than the glial cell line. MCP exposure alone could not induce the significant expression of CYPs, whereas the cells preexposed to CPA showed a significant response to MCP. Similar to the case of CPA induced expressions, neural cells were found to be more vulnerable than glial cells. Our data indicate differential expressions of CYPs in cultured human neural and glial cell lines. The findings were synchronized with protein ligand docking studies, which showed a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR and PXR. Similarly, the known CYP inducer CPA has also shown significant high docking scores with the two studied CYP regulators. We also observed a significant induction in reactive oxygen species (ROS), lipid peroxides (LPO), micronucleus (MN), chromosomal aberration (CA), and reduction in reduced glutathione (GSH) and catalase following the exposure of MCP. Moreover, the expressions of apoptotic markers such as caspase-3, caspase-9, Bax, and p53 were significantly upregulated, whereas the levels of antiapoptotic marker, Bcl2, was downregulated after the exposure of MCP in both cell lines. These findings confirm the involvement of ROS-mediated oxidative stress, which subsequently triggers apoptosis pathways in both human neural (SH-SY5Y) and glial (U373-MG) cell lines following the exposure of MCP.
The strains of Trichoderma harzianum were assessed for their effect on chickpea growth and control of charcoal rot caused by Macrophomina phaseolina in greenhouse assay. T. harzianum strain 25-92 significantly increased the fresh and dry weights by 50-63% and 24-42%, respectively, whereas strain 29-92 increased the fresh weight of chickpea cv. Radhey and Vishwas by 12-30% but not the dry weight in the absence of M. phaseolina. A marked increase in root length was caused by both the strains. In M. phaseolina infested pots, number of lateral roots and branching decreased with nonsignificant change in weight. Significant (P = 0.05) reduction in charcoal rot disease was observed in the pots amended with T. harzianum at all the concentrations. Moreover, 60-40% reduction in disease was recorded after 14 and 28 days in chickpea varieties Radhey and Vishwas. The resistant variety Vijay does not show significant disease. The reduction in disease was more pronounced at higher inoculum concentrations of T. harzianum (10 7-10 8 cfu/g). Overall, Trichoderma strain 25-92 improved plant growth and reduced damage in presence of the pathogen. Besides disease control the growth promoting properties of the strain improve the efficacy for commercial application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.