In this analysis, we present a theoretical study to examine the combined effect of both slip velocity and periodic body acceleration on an unsteady generalized non-Newtonian blood flow through a stenosed artery with permeable wall. A constant transverse magnetic field is applied on the peristaltic flow of blood, treating it as an elastico-viscous, electrically conducting and incompressible fluid. Appropriate transformation methods are adopted to solve the unsteady non-Newtonian axially symmetric momentum equation in the cylindrical polar coordinate system with suitably prescribed conditions. To validate the applicability of the proposed analysis, analytical expressions for the axial velocity, fluid acceleration, wall shear stress and volumetric flow rate are computed and for having an adequate insight to blood flow behavior through a stenosed artery, graphs have been plotted with varying values of flow variables, to analyse the influence of the axial velocity, wall shear stress and volumetric flow rate of streaming blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.