Furfural is a natural precursor to furan-based chemicals and has the potential to become a major renewable platform chemical for the production of biochemicals and biofuels. However, current industrial furfural production relies on relatively old and inefficient strategies that have hindered its capacity, and low production yields have strongly diminished its competitiveness with petroleum-based alternatives in the global market. This mini-review provides a critical analysis of past and current progress to enhance furfural production from lignocellulosic biomass. First, important chemical and fuel products derived from the catalytic conversion of furfural are outlined. We then discuss the importance of developing integrated production strategies to co-produce furfural with other valuable chemicals. Furfural formation and loss chemistries are explored to understand effective methods to improve furfural yields from pentosans. Finally, selected relevant commercial and academic technologies that promise to improve lignocellulosic furfural production are discussed.
A novel single phase co-solvent system using tetrahydrofuran (THF) promotes hydrolysis of maple wood to sugars, sugar dehydration, and lignin extraction simultaneously and achieves higher overall yields of the fuel precursors furfural, 5-hydroxymethylfurfural (HMF), and levulinic acid (LA) than previously reported from biomass. In a one-pot reaction, we obtained yields of 86% furfural, 21% HMF, and 40% LA in the liquid phase and over 90% extraction of lignin as a solid powder. The co-solvent reaction also produced a glucan-rich residue that is highly digestible by enzymes for biological conversion to ethanol or further thermochemical reaction to additional HMF and levulinic acid. These findings enable an integrated conversion platform in which THF is both a co-solvent and final co-product to enhance production of fuel precursors for catalytic upgrading to renewable liquid hydrocarbons fuels. † Electronic supplementary information (ESI) available. See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.