Abstract-We present an algorithm for simultaneous face detection, landmarks localization, pose estimation and gender recognition using deep convolutional neural networks (CNN). The proposed method called, HyperFace, fuses the intermediate layers of a deep CNN using a separate CNN followed by a multi-task learning algorithm that operates on the fused features. It exploits the synergy among the tasks which boosts up their individual performances. Additionally, we propose two variants of HyperFace: (1) HyperFace-ResNet that builds on the ResNet-101 model and achieves significant improvement in performance, and (2) Fast-HyperFace that uses a high recall fast face detector for generating region proposals to improve the speed of the algorithm. Extensive experiments show that the proposed models are able to capture both global and local information in faces and performs significantly better than many competitive algorithms for each of these four tasks.
SignificanceThis study measures face identification accuracy for an international group of professional forensic facial examiners working under circumstances that apply in real world casework. Examiners and other human face “specialists,” including forensically trained facial reviewers and untrained superrecognizers, were more accurate than the control groups on a challenging test of face identification. Therefore, specialists are the best available human solution to the problem of face identification. We present data comparing state-of-the-art face recognition technology with the best human face identifiers. The best machine performed in the range of the best humans: professional facial examiners. However, optimal face identification was achieved only when humans and machines worked in collaboration.
We present a multi-purpose algorithm for simultaneous face detection, face alignment, pose estimation, gender recognition, smile detection, age estimation and face recognition using a single deep convolutional neural network (CNN). The proposed method employs a multi-task learning framework that regularizes the shared parameters of CNN and builds a synergy among different domains and tasks. Extensive experiments show that the network has a better understanding of face and achieves state-of-the-art result for most of these tasks.
Recent progress in face detection (including keypoint detection), and recognition is mainly being driven by (i) deeper convolutional neural network architectures, and (ii) larger datasets. However, most of the large datasets are maintained by private companies and are not publicly available. The academic computer vision community needs larger and more varied datasets to make further progress.In this paper we introduce a new face dataset, called UMDFaces, which has 367,888 annotated faces of 8,277 subjects. We also introduce a new face recognition evaluation protocol which will help advance the state-ofthe-art in this area. We discuss how a large dataset can be collected and annotated using human annotators and deep networks. We provide human curated bounding boxes for faces. We also provide estimated pose (roll, pitch and yaw), locations of twenty-one key-points and gender information generated by a pre-trained neural network. In addition, the quality of keypoint annotations has been verified by humans for about 115,000 images. Finally, we compare the quality of the dataset with other publicly available face datasets at similar scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.