Context. The origin of the enhanced abundances of both s- and r-process elements observed in a subclass of carbon-enhanced metal-poor (CEMP) stars, denoted CEMP-r/s stars, still remains poorly understood. The i-process nucleosynthesis has been suggested as one of the most promising mechanisms for the origin of these stars. Aims. Our aim is to better understand the chemical signatures and formation mechanism(s) of five previously claimed potential CH star candidates HE 0017+0055, HE 2144−1832, HE 2339−0837, HD 145777, and CD−27 14351 through a detailed systematic follow-up spectroscopic study based on high-resolution spectra. Methods. The stellar atmospheric parameters, the effective temperature Teff, the microturbulent velocity ζ, the surface gravity log g, and the metallicity [Fe/H] are derived from local thermodynamic equilibrium analyses using model atmospheres. Elemental abundances of C, N, α-elements, iron-peak elements, and several neutron-capture elements are estimated using the equivalent width measurement technique as well as spectrum synthesis calculations in some cases. In the context of the double enhancement observed in four of the programme stars, we have critically examined whether the literature i-process model yields ([X/Fe]) of heavy elements can explain the observed abundance distribution. Results. The estimated metallicity [Fe/H] of the programme stars ranges from −1.63 to −2.74. All five stars show enhanced abundance for Ba, and four of them exhibit enhanced abundance for Eu. Based on our analysis, HE 0017+0055, HE 2144−1832, and HE 2339−0837 are found to be CEMP-r/s stars, whereas HD 145777 and CD−27 14351 show characteristic properties of CEMP-s stars. From a detailed analysis of different classifiers of CEMP stars, we have identified the one which best describes the CEMP-s and CEMP-r/s stars. We found that for both CEMP-s and CEMP-r/s stars, [Ba/Eu] and [La/Eu] exhibit positive values and [Ba/Fe] ≥ 1.0. However, CEMP-r/s stars satisfy [Eu/Fe] ≥ 1.0, 0.0 ≤ [Ba/Eu] ≤ 1.0, and/or 0.0 ≤ [La/Eu] ≤ 0.7. CEMP-s stars normally show [Eu/Fe] < 1.0 with [Ba/Eu] > 0.0 and/or [La/Eu] > 0.5. If [Eu/Fe] ≥ 1.0, then the condition on [Ba/Eu] and/or [La/Eu] for a star to be a CEMP-s star is [Ba/Eu] > 1.0 and/or [La/Eu] > 0.7. Using a large sample of similar stars from the literature we have examined whether the ratio of heavy-s to light-s process elements [hs/ls] alone can be used as a classifier, and if there are any limiting values for [hs/ls] that can be used to distinguish between CEMP-s and CEMP-r/s stars. Even though they peak at different values of [hs/ls], CEMP-s and CEMP-r/s stars show an overlap in the range 0.0 < [hs/ls] < 1.5, and hence this ratio cannot be used to distinguish between CEMP-s and CEMP-r/s stars. We have noticed a similar overlap in the case of [Sr/Ba] as well, in the range −1.6 < [Sr/Ba] < −0.5, and hence this ratio also cannot be used to separate the two subclasses.
Barium stars are one of the important probes to understand the origin and evolution of slow neutron-capture process elements in the Galaxy. These are extrinsic stars, where the observed s-process element abundances are believed to have an origin in the now invisible companions that produced these elements at their asymptotic giant branch (AGB) phase of evolution. We have attempted to understand the s-process nucleosynthesis, as well as the physical properties of the companion stars through a detailed comparison of observed elemental abundances of 10 barium stars with the predictions from AGB nucleosynthesis models, FRUITY. For these stars, we have presented estimates of abundances of several elements, C, N, O, Na, Al, α-elements, Fe-peak elements, and neutron-capture elements Rb, Sr, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, and Eu. The abundance estimates are based on high resolution spectral analysis. Observations of Rb in four of these stars have allowed us to put a limit to the mass of the companion AGB stars. Our analysis clearly shows that the former companions responsible for the surface abundance peculiarities of these stars are low-mass AGB stars. Kinematic analysis has shown the stars to be members of Galactic disc population.
We performed deep observations to search for radio pulsations in the directions of 375 unassociated Fermi Large Area Telescope γ-ray sources using the Giant Metrewave Radio Telescope (GMRT) at 322 and 607 MHz. In this paper we report the discovery of three millisecond pulsars (MSPs), PSR J0248+4230, PSR J1207–5050, and PSR J1536–4948. We conducted follow-up timing observations for ∼5 yr with the GMRT and derived phase-coherent timing models for these MSPs. PSR J0248+4230 and J1207–5050 are isolated MSPs having periodicities of 2.60 ms and 4.84 ms. PSR J1536–4948 is a 3.07 ms pulsar in a binary system with an orbital period of ∼62 days about a companion of a minimum mass of 0.32 M ⊙. We also present multifrequency pulse profiles of these MSPs from the GMRT observations. PSR J1536–4948 is an MSP with an extremely wide pulse profile having multiple components. Using the radio timing ephemeris we subsequently detected γ-ray pulsations from these three MSPs, confirming them as the sources powering the γ-ray emission. For PSR J1536–4948 we performed combined radio–γ-ray timing using ∼11.6 yr of γ-ray pulse times of arrival (TOAs) along with the radio TOAs. PSR J1536–4948 also shows evidence for pulsed γ-ray emission out to above 25 GeV, confirming earlier associations of this MSP with a ≥10 GeV point source. The multiwavelength pulse profiles of all three MSPs offer challenges to models of radio and γ-ray emission in pulsar magnetospheres.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.