Shape memory alloys (SMAs) have been well known for their superior and excellent properties which makes them an eligible candidate of paramount importance in real-life industrial applications such as; orthopedic implants, actuators, micro tools, stents, coupling and sealing elements, aerospace components, defense instruments, manufacturing elements, bio-medical appliances, etc. In spite of their exceptional properties, the effective processing of these alloys is always seen as a challenge by researchers around the globe. The present article has been therefore attempted to explore the numerous studies conducted to process these alloys by employing the principles of electrical discharge machining (EDM) and its allied approaches. The NiTi-based SMAs have been revealed to be explored majorly among the several types SMAs. The several investigations carried out in the domain of EDM, Wire-EDM, and some conventional processing of various types of SMAs have also been critically reviewed and reported. It also highlights the numerous experimental, theoretical, modeling, and optimization-based researches attempted in EDM of SMAs. It was also reported that the proper selection of process variables, tool electrode, and the dielectrics can substantially improve the overall process effectiveness. Among the various accessible EDM variants used for the processing of SMAs, attempted by the umpteen investigators, the wire-cut EDM process has been revealed as the most explored one for cutting SMAs than the other allied processes such as: die-sinking EDM and powder-mixed EDM. The micro-machining applications of EDM have also been deliberated briefly. The last section of the article reports about the opportunities and the challenges for future research.
Purpose Defective parts in manufacturing is a serious issue faced by every manufacturer. Even after proper care in design, material selection and manufacturing of product, there exists a defective part. The purpose of this paper is to explore the quality of the manufacturing, and find the use of effective quality tools to reduce the part defect rate in an electrical parts manufacturing unit, thereby, reducing the replaced cost of defective parts. Design/methodology/approach With the help of quality initiatives, like total quality management (TQM) and Lean Six Sigma (LSS), the firms can produce quality product in each stage of production. The paper focuses on the primary data collected from the XYZ electric manufacturer. Findings The main finding of this case analysis is that by the effective use of quality tools, the defective part return rate can be reduced, because of which the firm can observe reduction in replaced cost of almost INR24 lakh. In addition, 10A switch part contributes more in replacement cost. Further, it adds to the 35 percent of the overall part rejection. Research limitations/implications The study is more focused on particular type of switch product and can extend to other types of products. In addition, the analysis reveals the results of only 88 percent of the defective products. Practical implications The study provides results of the improved quality by effective use of quality tools and discusses the different types of defects in the electrical parts manufacturing. Introducing TQM and LSS to manufacturing can reduce the customer return rate to 1,300 parts per million (PPM) and even to 1,000 PPM in future. Originality/value The paper discusses the quality issues in the electrical manufacturer. Moreover, the case analysis briefs effective ways to improve the product quality and reduce the rejection rate.
Purpose A nut bolt joint is a primary device that connects mechanical components. The vibrations cause bolted joints to self-loosen. Created by motors and engines, leading to machine failure, and there may be severe safety issues. All the safety issues and self-loosen are directly and indirectly the functions of the accuracy and precision of the fabricated nut and bolt. Recent advancements in three-dimensional (3D) printing technologies now allow for the production of intricate components. These may be used technologies such as 3D printed bolts to create fasteners. This paper aims to investigate dimensional precision, surface properties, mechanical properties and scanning electron microscope (SEM) of the component fabricated using a multi-jet 3D printer. Design/methodology/approach Multi-jet-based 3D printed nut-bolt is evaluated in this paper. More specifically, liquid polymer-based nut-bolt is fabricated in sections 1, 2 and 3 of the base plate. Five nuts and bolts are fabricated in these three sections. Findings Dimensional inquiry (bolt dimension, general dimensions’ density and surface roughness) and mechanical testing (shear strength of nut and bolt) were carried out throughout the study. According to the ISO 2768 requirements for the General Tolerances Grade, the nut and bolt’s dimensional examination (variation in bolt dimension, general dimensions) is within the tolerance grades. As a result, the multi-jet 3D printing (MJP)-based 3D printer described above may be used for commercial production. In terms of mechanical qualities, when the component placement moves from Sections 1 to 3, the density of the manufactured part decreases by 0.292% (percent) and the shear strength of the nut and bolt decreases by 30%. According to the SEM examination, the density of the River markings, sharp edges, holes and sharp edges increased from Sections 1 to 3, which supports the findings mentioned above. Originality/value Hence, this work enlightens the aspects causing time lag during the 3D printing in MJP. It causes variation in the dimensional deviation, surface properties and mechanical properties of the fabricated part, which needs to be explored.
PurposeThis study aims to utilize DMAIC methodology along with value stream mapping and other Lean Six Sigma tools in a major automobile light manufacturing industry to reduce defect rates and increase production capacity in their manufacturing line. The study also proposes a modified framework based on lean principles and FlexSim to identify and reduce waste in the selected industry.Design/methodology/approachA Lean Six Sigma modified framework has been deployed with DMAIC to reduce the defect rate and increase the production rate. Various tools like value stream mapping, brainstorming, Pareto charts, 5S, kanban, etc. have been used at different phases of DMAIC targeting wastes and inventory in the production line. Also, a simulation model has been utilized for the automobile light manufacturing industry to improve the machine utilization time with varying batch sizes.FindingsThe results of the study indicated a 53% reduction in defect rates. Thus, there would be an expected improvement in sigma value from 3.78 to 3.89 and a reduction in defects per million opportunities (DPMO) from 11,244 to 8,493. Additionally, simulation model using FlexSim was developed, and the optimum ordering batch size of raw material was obtained. It was also analyzed that idle time for various stations could be reduced by up to 30%.Practical implicationsThe utilized framework helps identify defects for managers to increase production efficiency. The workers, operators and supervisors on the production line also need to be trained regularly for identifying the areas of improvement.Originality/valueThe modified Lean Six Sigma framework used in this study includes FlexSim simulation to make the framework robust, which has not been used with LSS tools in the literature studied. Also, the LSS finds very less application in the manufacturing domain, considering which this study tends to add value in existing literature taking a case of an automobile light manufacturing industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.