A profoundly effective magnetically recoverable nano zinc ferrite nanocatalyst was fabricated by means of sol-gel auto ignition strategy. The synthesized nanocatalyst has been completely portrayed by standard techniques for structural, morphological, compositional, surface, magnetic, dielectric, optical and photoluminescence properties individually. The x-ray diffraction pattern affirmed the arrangement of cubic spinel structure with an average crystallite size of 21 nm. FE-SEM images uncovered the circular morphology with nanometric average grain measure (37 nm). The surface area, pore volume and pore radius was observed to be 39.812 m 2 g −1 , 3.41 cc g −1 and 1.34 nm individually from BET analysis. VSM investigation demonstrated the superparamgnetic nature of the prepared sample with moderate magnetization value and negligible coercivity. The optical band gap deduced from UV-vis spectra was observed to be 2.098 eV. Every one of these properties of zinc nanoferrite makes them brilliant contender for microwave radiation absorption. Further, a proficient and versatile microwave irradiated solvent free synthesis of chalcone derivatives has been developed using prepared zinc nanoferrite catalyst. The remarkable highlights of this new protocol are solvent free reaction, economical cheapness, eco-friendliness, high yields, reduced reaction times and easy recovery and reuse of zinc ferrite nanocatalyst.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.