In tissues, collagen forms the scaffold for cell attachment and migration, and it modulates cell differentiation and morphogenesis by mediating the flux of chemical and mechanical stimuli. We are constructing biomimetic environments by immobilizing a collagen-derived high-affinity cell-binding peptide P-15 in three-dimensional (3-D) templates. The cell-binding peptide can be expected to transduce mechanical forces. In their physiological environment, periodontal ligament fibroblasts (PDLF) are subject to significant mechanical forces. We have examined the behavior of human PDLF in culture on particulate bovine anorganic bone mineral (ABM) coated with P-15 (ABM-P-15). Greater numbers of cells associated with ABM-P-15 compared to ABM alone. Higher levels of incorporation of radiolabeled precursors in DNA and protein were consistent with the presence of larger numbers of cells on ABM-P-15 compared to ABM cultures. Scanning electron microscopic examination showed that cultures on ABM-P-15 generated highly oriented 3-D colonies of elongated cells and formed copious amounts of fibrous as well as membranous matrix reminiscent of ligamentous structures. PDLF cultured on ABM formed sparse monolayers with little order and a meager matrix. Alizarin Red stained the matrix of particle associated cells and inter-particle cellular bridges in P-15-associated cultures, indicating mineralization. 3-D colony formation and ordering of cells along with increased mineralization suggests that the coupling of cells to the ABM matrix through P-15 may provide a biomimetic environment permissive for cell differentiation and morphogenesis. Our studies suggest that ABM-P-15 templates may be effective as endosseous grafts, and, when seeded with PDLF, these matrices may serve as tissue engineered substitutes for autologous bone grafts.
We have examined the ability of a synthetic 15-residue peptide, P-15, related to a biologically active domain of type I collagen, to promote attachment of human dermal fibroblasts to anorganic bovine bone mineral (ABM) phase. The attachment of cells increased with increasing content of P-15 on the surface of ABM particles, as seen by the increased binding of radiolabeled cells, and by light microscopy and scanning electron microscopy. Incorporation of radioactive precursors of DNA and protein synthesis showed that cells on P-15-coated ABM synthesized over twofold the amount of DNA and protein than did cells on uncoated ABM. Fibroblasts attached to ABM in the presence of P-15 formed threedimensional colonies. Cellular bridges formed between adjacent particles which aggregated in clusters with tissuelike structure. Cultures on ABM.P-15 stained for alkaline phosphatase. These observations suggest that P-15-coated ABM may be a useful matrix for bone repair. 0 1996
In its physiological solid state, type I collagen serves as a host for many types of cells. Only the molecules on fiber surface are available for interaction. In this interfacial environment, the conformation of a cell binding domain can be expected to fluctuate between the collagen fold and a distinctive non-collagen molecular marker for recognition and allosteric binding. If the cell binding domain can be localized in contiguous residues within the exposed half of a turn of the triple helix (approximately 15 residues), the need for extensive structural modification and unraveling of the triple helix is avoided. We examined the conformational preferences and biological activity of a synthetic 15-residue peptide (P-15), analogous to the sequence 766GTPGPQGIAGQRGVV780 in the alpha 1 (I) chain. Theoretical studies showed a high potential for a stable beta-bend for the central GIAG sequence. The flanking sequences showed facile transition to extended conformations. Circular dichroism of the synthetic peptide in anisotropic solvents confirmed the presence of beta-strand and beta-bend structures. P-15 inhibited fibroblast binding to collagen in a concentration dependent manner, with near maximal inhibition occurring at a concentration of 7.2 x 10(-6) M. The temporal pattern of cell attachment was altered markedly in the presence of P-15. No inhibition was seen with a peptide P-15(AI), an analogue of P-15 with the central IA residues reversed to AI or with collagen-related peptides (Pro-Pro-Gly)10, (Pro-Hyp-Gly)10, and polyproline, and with several unrelated peptides. Our studies suggest a molecular mechanism for cell binding to collagen fibers based on a conformational transition in collagen molecules on the fiber surface. Since the energy barrier between the collagen fold and beta-strand conformation is low, a local conformational change may be possible in molecules on the fiber surface because of their location in an anisotropic environment. Our observations also suggest that the sequence incorporated in P-15 may be a specific ligand for cells. Unlike other reported cell binding peptides, the residues involved in this interaction are non-polar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.