Fault detection and classification is a key challenge for the protection of High Voltage DC (HVDC) transmission lines. In this paper, the Teager–Kaiser Energy Operator (TKEO) algorithm associated with a decision tree-based fault classifier is proposed to detect and classify various DC faults. The Change Identification Filter is applied to the average and differential current components, to detect the first instant of fault occurrence (above threshold) and register a Change Identified Point (CIP). Further, if a CIP is registered for a positive or negative line, only three samples of currents (i.e., CIP and each side of CIP) are sent to the proposed TKEO algorithm, which produces their respective 8 indices through which the, fault can be detected along with its classification. The new approach enables quicker detection allowing utility grids to be restored as soon as possible. This novel approach also reduces computing complexity and the time required to identify faults with classification. The importance and accuracy of the proposed scheme are also thoroughly tested and compared with other methods for various faults on HVDC transmission lines.
Purpose This research paper aims to investigate the change detection filter technique with a decision tree-based event (fault type) classifier for recognizing and categorizing power system disturbances on the high-voltage DC (HVDC) transmission link. Design/methodology/approach A change detection filter is used to the average and differential current components, which detects the point of fault initiation and records a change detection point (CDP). The half-cycle differential and average currents on both sides of the CDP are sent through the signal processing unit, which produces the respective target. The extracted target indices are sent through a decision tree-based fault classifier mechanism for fault classification. Findings In comparison with conventional differential current protection systems, the developed framework is faster in fault detection and classification and provides great accuracy. The new technology allows for prompt identification of the fault category, allowing electrical grids to be restored as quickly as possible to minimize economic losses. This novel technology enhances efficiency in terms of reducing computing complexity. Research limitations/implications Setting a threshold value for identification is one of the limitations. To bring the designed system into stability condition before creating faults on it is another limitation. Reducing the computational burden is one of the limitations. Practical implications Creating a practical system in laboratory is difficult as it is a HVDC transmission line. Apart from that, installing rectifier and converter section for HVDC transmission line is difficult in a laboratory setting. Originality/value The suggested scheme’s importance and accuracy have been rigorously validated for the standard HVDC transmission system, subjected to various types of DC fault, and the results show the proposed algorithm would be a feasible alternative to real-time applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.