A new coronavirus infection, COVID-19, has recently emerged, and has caused a global pandemic along with an international public health emergency. Currently, no licensed vaccines are available for COVID-19. The identification of immunodominant epitopes for both B- and T-cells that induce protective responses in the host is crucial for effective vaccine design. Computational prediction of potential epitopes might significantly reduce the time required to screen peptide libraries as part of emergent vaccine design. In our present study, we used an extensive immunoinformatics-based approach to predict conserved immunodominant epitopes from the proteome of SARS-CoV-2. Regions from SARS-CoV-2 protein sequences were defined as immunodominant, based on the following three criteria regarding B- and T-cell epitopes: (i) they were both mapped, (ii) they predicted protective antigens, and (iii) they were completely identical to experimentally validated epitopes of SARS-CoV. Further, structural and molecular docking analyses were performed in order to understand the binding interactions of the identified immunodominant epitopes with human major histocompatibility complexes (MHC). Our study provides a set of potential immunodominant epitopes that could enable the generation of both antibody- and cell-mediated immunity. This could contribute to developing peptide vaccine-based adaptive immunotherapy against SARS-CoV-2 infections and prevent future pandemic outbreaks.
Chimeric RNA transcripts are formed when exons from two genes fuse together, often due to chromosomal translocations, transcriptional errors or trans-splicing effect. While these chimeric RNAs produce functional proteins only in certain cases, they play a significant role in disease phenotyping and progression. ChiTaRS 5.0 (http://chitars.md.biu.ac.il/) is the latest and most comprehensive chimeric transcript repository, with 111 582 annotated entries from eight species, including 23 167 known human cancer breakpoints. The database includes unique information correlating chimeric breakpoints with 3D chromatin contact maps, generated from public datasets of chromosome conformation capture techniques (Hi–C). In this update, we have added curated information on druggable fusion targets matched with chimeric breakpoints, which are applicable to precision medicine in cancers. The introduction of a new section that lists chimeric RNAs in various cell-lines is another salient feature. Finally, using text-mining techniques, novel chimeras in Alzheimer's disease, schizophrenia, dyslexia and other diseases were collected in ChiTaRS. Thus, this improved version is an extensive catalogue of chimeras from multiple species. It extends our understanding of the evolution of chimeric transcripts in eukaryotes and contributes to the analysis of 3D genome conformational changes and the functional role of chimeras in the etiopathogenesis of cancers and other complex diseases.
SMURF2, an E3 ubiquitin ligase and suggested tumor suppressor, operates in normal cells to prevent genomic instability and carcinogenesis. However, the mechanisms underlying SMURF2 inactivation in human malignancies remain elusive, as SMURF2 is rarely found mutated or deleted in cancers. We hypothesized that SMURF2 might have a distinct molecular biodistribution in cancer versus normal cells and tissues. The expression and localization of SMURF2 were analyzed in 666 human normal and cancer tissues, with primary focus on prostate and breast tumors. These investigations were accompanied by SMURF2 gene expression analyses, subcellular fractionation and biochemical studies, including SMURF2’s interactome analysis. We found that while in normal cells and tissues SMURF2 has a predominantly nuclear localization, in prostate and aggressive breast carcinomas SMURF2 shows a significantly increased cytoplasmic sequestration, associated with the disease progression. Mechanistic studies showed that the nuclear export machinery was not involved in cytoplasmic accumulation of SMURF2, while uncovered that its stability is markedly increased in the cytoplasmic compartment. Subsequent interactome analyses pointed to 14-3-3s as SMURF2 interactors, which could potentially affect its localization. These findings link the distorted expression of SMURF2 to human carcinogenesis and suggest the alterations in SMURF2 localization as a potential mechanism obliterating its tumor suppressor activities.
The recent outbreak of COVID-19 has generated an enormous amount of Big Data. To date, the COVID-19 Open Research Dataset (CORD-19), lists ∼130,000 articles from the WHO COVID-19 database, PubMed Central, medRxiv, and bioRxiv, as collected by Semantic Scholar. According to LitCovid (11 August 2020), ∼40,300 COVID19-related articles are currently listed in PubMed. It has been shown in clinical settings that the analysis of past research results and the mining of available data can provide novel opportunities for the successful application of currently approved therapeutics and their combinations for the treatment of conditions caused by a novel SARS-CoV-2 infection. As such, effective responses to the pandemic require the development of efficient applications, methods and algorithms for data navigation, text-mining, clustering, classification, analysis, and reasoning. Thus, our COVID19 Drug Repository represents a modular platform for drug data navigation and analysis, with an emphasis on COVID-19-related information currently being reported. The COVID19 Drug Repository enables users to focus on different levels of complexity, starting from general information about (FDA-) approved drugs, PubMed references, clinical trials, recipes as well as the descriptions of molecular mechanisms of drugs’ action. Our COVID19 drug repository provide a most updated world-wide collection of drugs that has been repurposed for COVID19 treatments around the world.
Many human genes are transcribed from both strands and produce sense-antisense gene pairs. Sense-antisense (SAS) chimeric transcripts are produced upon the coalescing of exons/introns from both sense and antisense transcripts of the same gene. SAS chimera was first reported in prostate cancer cells. Subsequently, numerous SAS chimeras have been reported in the ChiTaRS-2.1 database. However, the landscape of their expression in human cells and functional aspects are still unknown. We found that longer palindromic sequences are a unique feature of SAS chimeras. Structural analysis indicates that a long hairpin-like structure formed by many consecutive Watson-Crick base pairs appears because of these long palindromic sequences, which possibly play a similar role as double-stranded RNA (dsRNA), interfering with gene expression. RNA–RNA interaction analysis suggested that SAS chimeras could significantly interact with their parental mRNAs, indicating their potential regulatory features. Here, 267 SAS chimeras were mapped in RNA-seq data from 16 healthy human tissues, revealing their expression in normal cells. Evolutionary analysis suggested the positive selection favoring sense-antisense fusions that significantly impacted the evolution of their function and structure. Overall, our study provides detailed insight into the expression landscape of SAS chimeras in human cells and identifies potential regulatory features.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.