Due to digitization, a huge volume of data is being generated across several sectors such as healthcare, production, sales, IoT devices, Web, organizations. Machine learning algorithms are used to uncover patterns among the attributes of this data. Hence, they can be used to make predictions that can be used by medical practitioners and people at managerial level to make executive decisions. Not all the attributes in the datasets generated are important for training the machine learning algorithms. Some attributes might be irrelevant and some might not affect the outcome of the prediction. Ignoring or removing these irrelevant or less important attributes reduces the burden on machine learning algorithms. In this work two of the prominent dimensionality reduction techniques, Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) are investigated on four popular Machine Learning (ML) algorithms, Decision Tree Induction, Support Vector Machine (SVM), Naive Bayes Classifier and Random Forest Classifier using publicly available Cardiotocography (CTG) dataset from University of California and Irvine Machine Learning Repository. The experimentation results prove that PCA outperforms LDA in all the measures. Also, the performance of the classifiers, Decision Tree, Random Forest examined is not affected much by using PCA and LDA.To further analyze the performance of PCA and LDA the eperimentation is carried out on Diabetic Retinopathy (DR) and Intrusion Detection System (IDS) datasets. Experimentation results prove that ML algorithms with PCA produce better results when dimensionality of the datasets is high. When dimensionality of datasets is low it is observed that the ML algorithms without dimensionality reduction yields better results. INDEX TERMS Cardiotocography dataset, dimensionality reduction, feature engineering, linear discriminant analysis, machine learning, principal component analysis.
The enormous popularity of the internet across all spheres of human life has introduced various risks of malicious attacks in the network. The activities performed over the network could be effortlessly proliferated, which has led to the emergence of intrusion detection systems. The patterns of the attacks are also dynamic, which necessitates efficient classification and prediction of cyber attacks. In this paper we propose a hybrid principal component analysis (PCA)-firefly based machine learning model to classify intrusion detection system (IDS) datasets. The dataset used in the study is collected from Kaggle. The model first performs One-Hot encoding for the transformation of the IDS datasets. The hybrid PCA-firefly algorithm is then used for dimensionality reduction. The XGBoost algorithm is implemented on the reduced dataset for classification. A comprehensive evaluation of the model is conducted with the state of the art machine learning approaches to justify the superiority of our proposed approach. The experimental results confirm the fact that the proposed model performs better than the existing machine learning models.
Human–computer interaction (HCI) and related technologies focus on the implementation of interactive computational systems. The studies in HCI emphasize on system use, creation of new techniques that support user activities, access to information, and ensures seamless communication. The use of artificial intelligence and deep learning-based models has been extensive across various domains yielding state-of-the-art results. In the present study, a crow search-based convolution neural networks model has been implemented in gesture recognition pertaining to the HCI domain. The hand gesture dataset used in the study is a publicly available one, downloaded from Kaggle. In this work, a one-hot encoding technique is used to convert the categorical data values to binary form. This is followed by the implementation of a crow search algorithm (CSA) for selecting optimal hyper-parameters for training of dataset using the convolution neural networks. The irrelevant parameters are eliminated from consideration, which contributes towards enhancement of accuracy in classifying the hand gestures. The model generates 100 percent training and testing accuracy that justifies the superiority of the model against traditional state-of-the-art models.
Cyber-attacks are evolving at a disturbing rate. Data breaches, ransomware attacks, cryptojacking, malware and phishing attacks are now rampant. In this era of cyber warfare, the software industry is also growing with an increasing number of software being used in all domains of life. This evolution has added to the problems of software vendors and users where they have to prevent a wide range of attacks. Existing watermark detection solutions have a low detection rate in the software. In order to address this issue, this paper proposes a novel blind Zero code based Watermark detection approach named KeySplitWatermark, for the protection of software against cyber-attacks. The algorithm adds watermark logically into the code utilizing the inherent properties of code and gives a robust solution. The embedding algorithm uses keywords to make segments of the code to produce a key-dependent on the watermark. The extraction algorithms use this key to remove watermark and detect tampering. When tampering increases to a certain user-defined threshold, the original software code is restored making it resilient against attacks. KeySplitWatermark is evaluated on tampering attacks on three unique samples with two distinct watermarks. The outcomes show that the proposed approach reports promising results against cyber-attacks that are powerful and viable. We compared the performance of our proposal with state-of-the-art works using two different software codes. Our results depict that KeySplitWatermark correctly detects watermarks, resulting in up to 15.95 and 17.43 percent reduction in execution time on given code samples with no increase in program size and independent of watermark size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.