Competitive adsorption-desorption behavior of popular fluorescent labeling and bioanalyte molecules, Rhodamine 6G (R6G) and dopamine (DA), on a chemically heterogeneous graphene oxide (GO) surface is discussed in this study. Individually, R6G and DA compounds were found to adsorb rapidly on the surface of graphene oxide as they followed the traditional Langmuir adsorption behavior. FTIR analysis suggested that both R6G and DA molecules predominantly adsorb on the hydrophilic oxidized regions of the GO surface. Thus, when R6G and DA compounds were adsorbed from mixed solution, competitive adsorption was observed around the oxygen-containing groups of GO sheets, which resulted in partial desorption of R6G molecules from the surface of GO into the solution. The desorbed R6G molecules can be monitored by fluorescence change in solution and was dependent on the DA concentration. We suggest that the efficient competitive adsorption of different strongly bound bioanalytes onto GO-dye complex can be used for the development of sensitive and selective colorimetric biosensors.
We suggest that silver nanocube (AgNC) aggregates within cylindrical pores (PAM-AgNC) can be employed as efficient nanostructures for highly efficient, robust, tunable, and reusable surface-enhanced Raman scattering (SERS) substrates for trace level organic vapor detection which is a challenging task in chemical detection. We demonstrate the ability to tune both the detection limit and the onset of signal saturation of the substrate by switching the adsorption behavior of AgNCs between highly aggregated and more disperse by varying the number of adsorption-mediating polyelectrolyte bilayers on the pore walls of the membrane. The different AgNC distributions show large differences in the trace vapor detection limit of the common Raman marker benzenethiol (BT) and a widely used explosive binder Nmethyl-4-nitroaniline (MNA), demonstrating the importance of the large electromagnetic field enhancement associated with AgNC coupling. The SERS substrate with highly aggregated AgNCs within the cylindrical pores allows for consistent trace detection of mid ppb ($500) for BT analyte, and a record limit of detection of low ppb ($3) for MNA vapors with an estimated achievable limit of detection of approximately 600 ppt. The dispersed AgNC aggregates do not saturate at higher ppb concentrations, providing an avenue to distinguish between higher ppb concentrations and increase the effective range of the SERS substrate design. A comparison between the AgNC substrate and an electroless deposition substrate with silver quasi-nanospheres (PAM-AgNS) also demonstrates a higher SERS activity, and better detection limit, by the nanocube aggregates. This is supported by FDTD electromagnetic simulations that suggest that the higher integrated electromagnetic field intensity of the hot spots and the large specific interfacial areas impart greatly improved SERS for the AgNCs. Moreover, we demonstrated that the AgNC substrate can be reused multiple times without significant loss of SERS activity which opens up new avenues for in-field monitoring.
A mixed-valence tin oxide, (Sn(2+))2(Sn(4+))O4, was synthesized via a hydrothermal route. The Sn3O4 material consisted of highly crystalline {110} flexes. The Sn3O4 material, when pure platinum (Pt) was used as a co-catalyst, significantly catalyzed water-splitting in aqueous solution under illumination of visible light (λ > 400 nm), whereas neither Sn(2+)O nor Sn(4+)O2 was active toward the reaction. Theoretical calculations have demonstrated that the co-existence of Sn(2+) and Sn(4+) in Sn3O4 leads to a desirable band structure for photocatalytic hydrogen evolution from water solution. Sn3O4 has great potential as an abundant, cheap, and environmentally benign solar-energy conversion catalyst.
A copper-and-zinc (Cu–Zn) alloy material was synthesized using a vacuum sealing method, in which evaporated zinc was reacted with copper film or nanoparticles to form a homogeneous Cu–Zn alloy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.