Communicated by F. BrezziIn this work we present some moment preserving finite volume schemes (FVS) for solving population balance equations. We are considering unified numerical methods to simultaneous aggregation, breakage, growth and source terms, e.g. for nucleation. The criteria for the preservation of different moments are given. The property of conservation is a special case of preservation. First we present a FVS which shows the preservation with respect to one-moment depending upon the processes under consideration. In case of the aggregation and breakage it satisfies first-moment preservation whereas for the growth and nucleation we observe zeroth-moment preservation. This is due to the wellknown property of conservativity of FVS. However, coupling of all the processes shows no preservation for any moments. To overcome this issue, we reformulate the cell average technique into a conservative formulation which is coupled together with a modified upwind scheme to give moment preservation with respect to the first two-moments for all four processes under consideration. This allows for easy coupling of these processes. The preservation is proven mathematically and verified numerically. The numerical results for the first two-moments are verified for various coupled processes where analytical solutions are available.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.