This paper presents a green and sustainable route for mechanical recycling of poly(lactic acid) (PLA)/cellulose nanocrystal (CNC) based films multiple times, which results in enhanced thermal, rheological, and structural properties along with improved processability. Recycling of reactively extruded PLA/CNC films in the presence of dicumyl peroxide (DCP) was carried out with sulfuric and hydrochloric acid hydrolyzed CNCs (CNC-S and CNC-Cl). This shows improved thermal stability (improved by 12 °C), consistent M w characteristics (180−150 kDa), and enhanced melt strength as evident from the thermal degradation studies and viscoelastic properties measured from rheological studies. The improved recyclability of PLA/CNC films was evident from enhanced complex viscosity and storage modulus of melt by ∼4 and 10 times along with increased mechanical strength of ∼16−30% even after the third recycling. Therefore, the present study provides a novel route to recycle PLA-based CNC films after their service life into value-added biodegradable products with adequate properties competitive enough to replace petroleum-based conventional plastics for commodity applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.