SummaryCondensin is a conserved protein complex that functions in chromosome condensation and segregation. It has not been previously unequivocally determined whether condensin is required throughout mitosis. Here, we examined whether Schizosaccharomyces pombe condensin continuously acts on chromosomes during mitosis and compared its role with that of DNA topoisomerase II (Top2). Using double mutants containing a temperature-sensitive allele of the condensin SMC2 subunit cut14 (cut14-208) or of top2, together with the cold-sensitive nda3-KM311 mutation (in -tubulin), temperature-shift experiments were performed. These experiments allowed inactivation of condensin or Top2 at various stages throughout mitosis, even after late anaphase. The results established that mitotic chromosomes require condensin and Top2 throughout mitosis, even in telophase. We then showed that the Cnd2 subunit of condensin (also known as Barren) is the target subunit of Aurora-B-like kinase Ark1 and that Ark1-mediated phosphorylation of Cnd2 occurred throughout mitosis. The phosphorylation sites in Cnd2 were determined by mass spectrometry, and alanine and glutamate residue replacement mutant constructs for these sites were constructed. Alanine substitution mutants of Cnd2, which mimic the unphosphorylated protein, exhibited broad mitotic defects, including at telophase, and overexpression of these constructs caused a severe dominantnegative effect. By contrast, glutamate substitution mutants, which mimic the phosphorylated protein, alleviated the segregation defect in Ark1-inhibited cells. In telophase, the condensin subunits in cut14-208 mutant accumulated in lumps that contained telomeric DNA and proteins that failed to segregate. Condensin might thus serve to keep the segregated chromosomes apart during telophase.
Advances in systematic computational biology and rapid elucidation of synergistic interplay between cis and trans factors governing transcriptional control have facilitated functional annotation of gene networks. The generation of data through deconstructive, reconstructive and database assisted promoter studies, and its integration to principles of synthetic engineering has started an era of designer promoters. Exploration of natural promoter architecture and the concept of cis engineering have not only enabled fine tuning of single or multiple transgene expression in response to perturbations in the chemical, physiological and environmental stimuli but also provided researchers with a unique answer to various problems in crop improvement in the form of bidirectional promoters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.