Background: The Internet of Medical Things, often known as IoMT, is a revolutionary method of connecting medical equipment and the software that operates on it to the computer networks that are used in healthcare 5.0. The rapid development of smart medical devices on IoMT platforms has led to the adoption of major technologies in the modernization of healthcare procedures, the administration of diseases, and the improvement in patient treatment standards. The IoMT offers a variety of cloud-based applications, including data exchange, data screening, patient surveillance, information collection and analysis, and hygienic hospital attention. Wireless sensor networks (WSNs) are responsible for both the gathering and delivery of data. Method: The safety of patients and their right to privacy are the top priorities in the healthcare sector. Anyone may see and modify the patient’s health information because the data from these smart gadgets are sent wirelessly through the airways. Hence, we developed a unique elliptic curve cryptography-based energy-efficient routing protocol (ECC-EERP) to provide a high level of security and energy efficient system for healthcare 5.0. Data can be encrypted using the key-based method ECC-EERP. It employs pairs of public and private keys to decrypt and encrypts web traffic and reducse the amount of energy needed by a WSN in aggregate. Result and Discussion: The efficiency of the suggested method was evaluated in comparison with that of a variety of existing methods. The suggested method was evaluated with the use of many parameters such as security, encryption throughput, energy efficiency, network lifetime, communication overload, computation time, and implementation cost. The results showed that the proposed technique provides enhanced security and energy efficiency.
This paper considers the main challenges for all components engaged in the driving task suggested by the automation of road vehicles or autonomous cars. Numerous autonomous vehicle developers often invest an important amount of time and effort in fine-tuning and measuring the route tracking to obtain reliable tracking performance over a wide range of autonomous vehicle speed and road curvature diversities. However, a number of automated vehicles were not considered for fault-tolerant trajectory tracking methods. Motivated by this, the current research study of the Differential Lyapunov Stochastic and Decision Defect Tree Learning (DLS-DFTL) method is proposed to handle fault detection and course tracking for autonomous vehicle problems. Initially, Differential Lyapunov Stochastic Optimal Control (SOC) with customizable Z-matrices is to precisely design the path tracking for a particular target vehicle while successfully managing the noise and fault issues that arise from the localization and path planning. With the autonomous vehicle’s low ceilings, a recommendation trajectory generation model is created to support such a safety justification. Then, to detect an unexpected deviation caused by a fault, a fault detection technique known as Decision Fault Tree Learning (DFTL) is built. The DLS-DFTL method can be used to find and locate problems in expansive, intricate communication networks. We conducted various tests and showed the applicability of DFTL. By offering some analysis of the experimental outcomes, the suggested method produces significant accuracy. In addition to a thorough study that compares the results to state-of-the-art techniques, simulation was also used to quantify the rate and time of defect detection. The experimental result shows that the proposed DLS-DFTL enhances the fault detection rate (38%), reduces the loss rate (14%), and has a faster fault detection time (24%) than the state of art methods.
A tumor is an abnormal development of cells in the human body. A tumor develops when cells divide without any control. Tumors change their size from a small to large lump. Tumors appear anywhere in the body. The early stage of diagnosis is an essential one in disease treatment. Many researchers carried out their research on different tumor detection methods. However, the tumor detection accuracy level was not improved and tumor detection time consumption not minimized. In order to address these problems, an Iterative Reflect Perceptual Sammon Bagging Classification (IRPS-BAC) Method is introduced. The aim is to accurately detect brain tumors as early as possible and make the method suitable for real-time applications. The IRPS-BAC Method comprises two processes, namely, feature selection and classification using the iterative reflect perceptual sammon feature selection process and bagging classification process. In the IRPS-BAC Method, an input of medical data are gathered from the Epileptic Seizure Recognition Data Set and Cervical Cancer Risk Classification database. After that, iterative reflect perceptual sammon feature selection process is carried out to select the relevant features. Iterative reflect perceptual divergence computes the variation between two features. After that, sammon mapping projects the similar and dissimilar features into feature space. By this manner, the relevant features get selected using the IRPS-BAC Method. With the help of selected relevant features, bagging classification process is carried out. In bagging classification process, internal node processes the selected features and leaf node to make the tumor decision as normal or cancerous one based on information gain. This, in turn, helps to reduce the time complexity and error rate. The performance of the proposed IRPS-BAC Method is determined by two benchmark datasets through comparing the parameter such as tumor detection time, tumor detection accuracy and error rate with the existing approaches. In the Epileptic Seizure Recognition Data Set, the proposed IRPS-BAC Method improves tumor detection accuracy by 16%, with minimum time period and the error rate of 41 ms and 58% for tumor detection as compared to existing methods. By using Cervical Cancer Risk Classification, the proposed IRPS-BAC Method exhibited higher classification performance measures, including accuracy (14%), time (46 ms), and error rate (61%), than the current conventional approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.