Fetal Bovine Serum (FBS) is used as a major supplement in culturing animal cells under in vitro conditions. Due to ethical concern, high cost, biosafety, and geographical as well as batchwise result variations, it is important to reduce or replace the use of FBS in animal cell culture. The major objective of this work is to evaluate the feasibility of heat‐inactivated coelomic fluid (HI‐CF) of the earthworm, Perionyx excavatus as a possible alternative for FBS in animal cell culture experiments. The coelomic fluid (CF) was extruded from the earthworm using electric shock method and used for the experiments. Electric shock method is a simple non‐invasive technique, which has no harmful effect on earthworms. Mouse primary fibroblast and HeLa cell lines were used in this study. Among HI‐CF, autoclaved CF and crude CF, the supplement of medium with HI‐CF shows positive results. The processed HI‐CF (90°C for 5 min) at 10% supplement in cell culture medium promote maximum cell growth but cells need the initial support of FBS for the attachment to the culture flask. Microscopic observation and immunofluorescence assay with actin and lamin A confirm that the cellular and molecular morphology of the cells is maintained intact. The HI‐CF of earthworm, P. excavatus has shown better cellular viability when compared with FBS and making it possible as an alternative supplement to minimize the use of FBS.
Venom of
Conus inscriptus
, a vermivorous cone snail found abundantly in the southern coastal waters was studied to yield conotoxins through proteomic analysis. A total of 37 conotoxins (4 with single disulfide bonds, 20 with two disulfide bonds and 11 three disulfide-bonded peptides) were identified using mass spectrometric analysis. Among them, amino acid sequences of 11 novel conopeptides with one, two and three disulfides belonging to different classes were derived through manual
de novo
sequencing. Based on the established primary sequence, they were pharmacologically classified into α conotoxins, µ conotoxins and contryphans. Except In1696 all other conopeptides have undergone C-terminal amidation. The natural venom exhibited 50% lethality at 304.82 µg/mL against zebrafish embryo and 130.31 µg/mL against brine shrimp nauplii. The anticonvulsant study of natural venom effectively reduced the locomotor activity against pentylenetetrazole (PTZ) treated zebrafish. This concludes that the venom peptides from
Conus inscriptus
exhibit potential anticonvulsant function, which leads to the discovery of lead molecules against seizures.
Marine cone snails are predatory gastropods characterized by a well-developed venom apparatus and highly evolved hunting strategies that utilize toxins to paralyze prey and defend against predators. The venom of each species of cone snail has a large number of pharmacologically active peptides known as conopeptides or conotoxins that are usually unique in each species. Nevertheless, venoms of only very few species have been characterized so far by transcriptomic approaches. In this study, we used transcriptome sequencing technologies and mass spectrometric methods to describe the diversity of venom components expressed by a worm-hunting species, Conus bayani. A total of 82 conotoxin sequences were retrieved from transcriptomic data that contain 54 validated conotoxin sequences clustered into 21 gene superfamilies including divergent gene family, 17 sequences clustered to 6 different conotoxin classes, and 11 conotoxins classified as unassigned gene family. Seven new conotoxin sequences showed unusual cysteine patterns. We were also able to identify 19 peptide sequences using mass spectrometry that completely overlapped with the conotoxin sequences obtained from transcriptome analysis. Importantly, herein we document the presence of 16 proteins that include five post-translational modifying enzymes obtained from transcriptomic data. Our results revealed diverse and novel conopeptides of an unexplored species that could be used extensively in biomedical research due to their therapeutic potentials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.