The rapid spread of the novel corona virus disease (COVID-19) has disrupted the traditional clinical services all over the world. Hospitals and healthcare centers have taken extreme care to minimize the risk of exposure to the virus by restricting the visitors and relatives of the patients. The dramatic changes happened in the healthcare norms have made it hard for the deaf patients to communicate and receive appropriate care. This paper reports a work on automatic sign language recognition that can mitigate the communication barrier between the deaf patients and the healthcare workers in India. Since hand gestures are the most expressive components of a sign language vocabulary, a novel dataset of dynamic hand gestures for the Indian sign language (ISL) words commonly used for emergency communication by deaf COVID-19 positive patients is proposed. A hybrid model of deep convolutional long short-term memory network has been utilized for the recognition of the proposed hand gestures and achieved an average accuracy of 83.36%. The model performance has been further validated on an alternative ISL dataset as well as a benchmarking hand gesture dataset and obtained average accuracies of
and
, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.