We use molecular dynamics simulations to study the role played by solvent in promoting anisotropic growth of colloidal nanostructures. Considering the growth of Ag nanowires and nanoplates in organic solvent, we study how solvent influences the aggregation of a small and relatively isotropic nanocrystal with a larger nanowire or a square nanoplate. We observe that when the two nanocrystals approach one another they almost always adopt a mesocrystal configuration, a free-energy minimum in which the two particles hover next to each other with their facets parallel and one or two layers of solvent between themanalogous to experimentally observed mesocrystal structures. Nanocrystal aggregation occurs from the mesocrystal state, and the free-energy barrier for aggregation is smallest on the smallest facets, which perpetuates anisotropic growth. By characterizing solvent ordering around the nanocrystal surfaces, as well as aggregation mechanisms, we find that solvent ordering is disrupted at the edges of the crystals, and this is where initial contact between the two nanoparticles is most likely to occur. Because the small nanocrystal is in close proximity to edges of the large nanostructure at its smallest facets, the free-energy barriers for aggregation are smaller there. Our general model contains features that are observed in a wide variety of systems that exhibit mesocrystal states and oscillatory solvation forces. These studies indicate that solvent can play a key role in promoting the anisotropic growth of colloidal nanostructures.
Surface morphologies obtained through codeposition of a small quantity (2%) of impurities with Cu during growth (step-flow mode, θ = 40 ML) significantly depends on the lateral nearest-neighbor binding energy (ENN ) and the diffusion barrier (E d ) of the impurity atom on Cu(0 0 1).1 Based on these two energy parameters, ENN and E d , we classify impurity atoms into four sets. We study island nucleation and growth in the presence of codeposited impurities from different sets in the submonolayer (θ ≤ 0.7 ML) regime. Similar to growth in the step-flow mode, we find different nucleation and growth behavior for impurities from different sets. We characterize these differences through variations of the number of islands (Ni) and the average island size (AIS) with coverage (θ). Further, we compute the critical nucleus size (i) for all of these cases from the distribution of capture-zone areas using the generalized Wigner distribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.