The handwriting based person identification systems use their designer's perceived structural properties of handwriting as features. In this paper, we present a system that uses those structural properties as features that graphologists and expert handwriting analyzers use for determining the writer's personality traits and for making other assessments. The advantage of these features is that their definition is based on sound historical knowledge (i.e., the knowledge discovered by graphologists, psychiatrists, forensic experts, and experts of other domains in analyzing the relationships between handwritten stroke characteristics and the phenomena that imbeds individuality in stroke). Hence, each stroke characteristic reflects a personality trait. We have measured the effectiveness of these features on a subset of handwritten Devnagari and Latin script datasets from the Center for Pattern Analysis and Recognition (CPAR-2012), which were written by 100 people where each person wrote three samples of the Devnagari and Latin text that we have designed for our experiments. The experiment yielded 100% correct identification on the training set. However, we observed an 88% and 89% correct identification rate when we experimented with 200 training samples and 100 test samples on handwritten Devnagari and Latin text. By introducing the majority voting based rejection criteria, the identification accuracy increased to 97% on both script sets.
We propose a post-OCR text correction approach for digitising texts in Romanised Sanskrit. Owing to the lack of resources our approach uses OCR models trained for other languages written in Roman. Currently, there exists no dataset available for Romanised Sanskrit OCR. So, we bootstrap a dataset of 430 images, scanned in two different settings and their corresponding ground truth. For training, we synthetically generate training images for both the settings. We find that the use of copying mechanism (Gu et al., 2016) yields a percentage increase of 7.69 in Character Recognition Rate (CRR) than the current state of the art model in solving monotone sequence-tosequence tasks (Schnober et al., 2016). We find that our system is robust in combating OCR-prone errors, as it obtains a CRR of 87.01% from an OCR output with CRR of 35.76% for one of the dataset settings. A human judgement survey performed on the models shows that our proposed model results in predictions which are faster to comprehend and faster to improve for a human than the other systems 1 .
No abstract
The Support Vector Machine (SVM) is a powerful classification technique that has been used extensively in the field of medical imaging. A model based on SVM with Gaussian RBF kernel is proposed here for the automatic detection of brain tumor from MRI images. Various textural characteristics of the MRI images of human brain are extracted to construct a feature set. These features sets are then used to train the classifier. The results obtained are compared with another powerful efficient classifier AdaBoost. AdaBoost classifies data according to the law of majority vote by base classifiers (ensemble learning). The comparative results show that though the difference between the performance measures is marginal, SVM gives higher precision and low error rates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.