In the past storage vendors used different types of storage depending upon the type of workload. For example, they used Solid State Drives (SSDs) or FC hard disks (HDD) for online transaction, while SATA for archival type workloads. However, recently many storage vendors are designing hybrid SSD/HDD based systems that can satisfy multiple service level objectives (SLOs) of different workloads all placed together in one storage box, at better cost points. The combination is achieved by using SSDs as a read-write cache while HDD as a permanent store. In this paper we present an SLO based resource management algorithm that controls the amount of SSD given to a particular workload. This algorithm solves following problems: 1) it ensures that workloads do not interfere with each other 2) it ensure that we do not overprovision (cost wise) the amount of SSD allocated to a workload to satisfy its SLO (latency requirement) and 3) dynamically adjust SSD allocated in light of changing workload characteristics (i.e., provide only required amount of SSD). We have implemented our algorithm in a prototype Hybrid Store, and have tested its efficacy using many real workloads. Our algorithm satisfies latency SLOs almost always by utilizing close to optimal amount of SSD and saving 6-50% of SSD space compared to the naïve algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.