Knowledge of genetic diversity in lentil is imperative for selection of parental genotypes that could yield heterotic combinations. The aim of the present study was to investigate the genetic diversity among 43 diverse lentil genotypes to identify complementary and unique genotypes for breeding programmes. Field experimentation was carried out in two winter seasons (2019–2020 and 2020–2021) in Hisar (29°10′ N, 75°46′ E) using randomized block design (RBD) with three replications. The chi-square test analysis showed significant genotypic variation for qualitative traits. There was substantial genetic variation among the genotypes for most quantitative traits, connoting the need to exploit a high degree of genetic variation through selection. Multiple-trait selection would also be beneficial, as seed yield was positively associated with most quantitative traits. The principal component analysis recognized seed yield (SY), days to 50% flowering (DTF), days to maturity (DTM), number of pods per plant (NPP), number of primary branches (NPB), plant height (PH) and biological yield (BY) as target traits that prominently described variation within lentil genotypes. The cluster analysis discriminated the lentil genotypes into five discrete clusters. Cluster III and V were the most distant groups, implying wider diversity among the genotypes of these groups. Furthermore, cluster analysis identified genotypes IPL 316, LH 17-19, LH 18-04, LH 17-17, IPL 81 and Pant L-8 as high-yielding genotypes, while L 4717 was identified as an early-maturing genotype. Therefore, to obtain a broad spectrum of early-maturing high-yielding segregants, the selected genotypes may serve as superior parental lines for structuring breeding strategies.
Field pea (Pisum sativum L.) is a highly nutritious winter-season pulse crop. It is used as food, feed, and fodder and offers nutritional security to low-income people in developing countries. Different graphical approaches like Principal Component Analysis (PCA) and Genotype + Genotype × Environment (GGE) biplots were used along with the conventional line × tester to identify efficient parents, combining ability effects and distinct heterotic groups in field pea (Pisum sativum L.). The study used a line tester design (9 × 3) for seed yield and its associated traits. In the conventional analysis, lines Aman and HFP 715 and the tester GP02/1108, as well as crosses HFP 715 × GP02/1108, Aman × GP02/1108, and Pant P-243 × HFP 1426 showed the best GCA (General Combining Ability) and SCA (Specific Combining Ability) effects, respectively, for seed yield and its attributes. The σ2SCA > σ2GCA, and σ2D > σ2A in almost all the traits indicated control of non-additive gene effects. High manifestations of heterobeltiosis for seed yield were evidenced by the superiority of 24 out of 27 crosses over the better parent. The highest significant heterobeltiosis was observed in the cross HFP 715 × GP02/1108, followed by IPF 14-16 × GP02/1108, IPF 14-16 × HFP 1426, DDR-23 × HFP 1426, DDR-23 × GP02/1108, and Aman × GP02/1108 for yield and its attributes. The biplot techniques were used to analyze data and compare their results with conventional line × tester analysis. Overall, graphical analysis results were very similar to those of traditional analysis. Consequently, it can surely be assumed that these methods could be helpful in presenting data from field pea breeding experiments carried out with line × tester design.
Development of new plant varieties is key to sustainable agriculture, specially given that climate change poses newer challenges with uncertainties of production ecosystems. However, to accrue the full genetic potential of a variety, it is essential to maintain the variety in true-to-type, as it was released for commercial use. The methodology adopted to maintain the genotypic constitution of a variety through the series of multiplication (generations) is known as variety maintenance or maintenance breeding. Its successful implementation needs a thorough understanding of the breeding methodology, varietal characteristics, and the influence of the environment on them. Though specific procedures of variety maintenance are followed for each crop group, which are based on their flowering, pollination behaviour and other essential traits, the basic principles are based on the mode of pollination (self- or cross-pollinated) and genetic constitutions.
ChemInform is a weekly Abstracting Service, delivering concise information at a glance that was extracted from about 100 leading journals. To access a ChemInform Abstract of an article which was published elsewhere, please select a “Full Text” option. The original article is trackable via the “References” option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.