Patient-derived pancreatic ductal adenocarcinoma (PDAC) organoid systems show great promise for understanding the biological underpinnings of disease and advancing therapeutic precision medicine. Despite the increased use of organoids, the fidelity of molecular features, genetic heterogeneity, and drug response to the tumor of origin remain important unanswered questions limiting their utility. To address this gap in knowledge, primary tumor- and patient-derived xenograft (PDX)-derived organoids, and 2D cultures for in-depth genomic and histopathologic comparisons with the primary tumor were created. Histopathologic features and PDAC representative protein markers (e.g., claudin 4 and CA19-9) showed strong concordance. DNA- and RNA-sequencing (RNAseq) of single organoids revealed patient-specific genomic and transcriptomic consistency. Single-cell RNAseq demonstrated that organoids are primarily a clonal population. In drug response assays, organoids displayed patient-specific sensitivities. In addition, the PDX response to FOLFIRINOX and gemcitabine/abraxane treatments were examined, which was recapitulated with organoids. This study has demonstrated that organoids are potentially invaluable for precision medicine as well as preclinical drug treatment studies because they maintain distinct patient phenotypes and respond differently to drug combinations and dosage. The patient-specific molecular and histopathologic fidelity of organoids indicate that they can be used to understand the etiology of the patient's tumor and the differential response to therapies and suggests utility for predicting drug responses.
Lamellar smectic A to columnar mesophase crossover is observed in p-substituted aroylhydrazones by variation of the alkoxy chain density at peripherals.
Human muscles, including skeletal, smooth, and cardiac muscles, are able to perform diverse deformations and execute complex biofunctions stimulated by nerve signals. Similarly, liquid crystal elastomer (LCE), which can respond to external stimuli with large and reversible deformations, demonstrates superior advantages to mimic nature muscles to fabricate artificial muscles. Till now, LCE has been utilized to simulate deformations and related functions of skeletal and smooth muscles. However, limited by the existing fabrication strategy, employing LCE to mimic the motion of cardiac muscles and further realizing the structure‐determined pumping functions, is still an open challenge. Learning from the specific spatial arrangements and synergistic actuation of cardiac muscle fibers within human heart, a simple and general strategy to construct artificial cardiac muscles with LCE fibers is proposed. In this work, LCE fibers with similar modulus and actuation behavior to muscle fibers are fabricated and spatially arranged in biological architectures as cardiac muscle fibers. As a result, artificial cardiac muscles are constructed and are able to perform simultaneous contraction and torsion motions, realizing heart‐pumping functions. This general strategy should be also applicable for other smart materials to conduct challenging tasks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.