Dynamical downscaling of General Circulation Model (GCM) data for any region has been made possible due to a set of physics options and model dynamics within the Weather Research and Forecasting (WRF) model. This study evaluated the performance of an ensemble of physics options in simulating rainfall during wet and dry seasons of Lao PDR. The model evaluation criteria focused on identifying the optimum physics options for a range of scenarios. No single combination of physics options performed well in all scenarios reflecting the importance of using different parameterizations according to the geographic location and the intended application of the results. For the dry season, none of the ensemble members performed satisfactorily for the southern region of Lao PDR, while all the ensemble members performed well for the northern and central regions. While almost all the WRF simulations overestimated the rainfall during the wet season, BMJ for cumulus physics performed better in the northern and central regions, and KF performed better in the south region. The YSU scheme performed best as the planetary boundary layer for both wet and dry seasons, while WSM5 for the wet season and Lin for the dry season gave the best model performance as the microphysics option.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.