This paper studies optimum detectors and error rate analysis for wireless systems with low-resolution quantizers in the presence of fading and noise. A universal lower bound on the average symbol error probability (SEP), correct for all M-ary modulation schemes, is obtained when the number of quantization bits is not enough to resolve M signal points. In the special case of M-ary phase shift keying (M-PSK), the maximum likelihood detector is derived. Utilizing the structure of the derived detector, a general average SEP expression for M-PSK modulation with n-bit quantization is obtained when the wireless channel is subject to fading with a circularly-symmetric distribution. For the Nakagami-m fading, it is shown that a transceiver architecture with n-bit quantization is asymptotically optimum in terms of communication reliability if n ≥ log 2 M + 1. That is, the decay exponent for the average SEP is the same and equal to m with infinite-bit and n-bit quantizers for n ≥ log 2 M + 1. On the other hand, it is only equal to 1 2 and 0 for n = log 2 M and n < log 2 M , respectively. An extensive simulation study is performed to illustrate the accuracy of the derived results, energy efficiency gains obtained by means of low-resolution quantizers, performance comparison of phase modulated systems with independent in-phase and quadrature channel quantization and robustness of the derived results under channel estimation errors.
This paper analyzes the performance of a multi-user multihop relay network using a low complexity decentralized relay selection (DRS) scheme for decode-and-forward cooperative networks. We carry out a rigorous diversity order analysis, with Nakagami- m fading and pathloss and show that the DRS scheme achieves full diversity while maintaining a complexity that is quadratic in the number of users, quadratic in the number of relays and independent of the number of hops. For a special case of two-user networks we derive exact closed-form expressions for the outage probability by considering the order statistics. Furthermore, we extend our analysis to consider interfering relay networks and derive an accurate lower bound on the outage of an arbitrary network user. Based on the lower bound we also show how the outage probability saturates in the high signal-to-interference-plus-noise ratio regime. Extensive numerical examples are used to illustrate the accuracy of the analysis and to highlight the use of the DRS scheme in multi-user multihop relay networks. © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
This paper considers a low-resolution wireless communication system in which transmitted signals are corrupted by fading and additive noise. First, a universal lower bound on the average symbol error probability (SEP), correct for all M -ary modulation schemes, is obtained when the number of quantization bits is not enough to resolve M signal points. Second, in the special case of M -ary phase shift keying (M -PSK), the optimum maximum likelihood detector for equiprobable signal points is derived. Third, utilizing the structure of the derived optimum receiver, a general average SEP expression for the M -PSK modulation with n-bit quantization is obtained when the wireless channel is subject to fading with a circularlysymmetric distribution. Finally, an extensive simulation study of the derived analytical results is presented for general Nakagamim fading channels. It is observed that a transceiver architecture with n-bit quantization is asymptotically optimum in terms of communication reliability if n ≥ log 2 M + 1. That is, the decay exponent for the average SEP is the same and equal to m with infinite-bit and n-bit quantizers for n ≥ log 2 M + 1. On the other hand, it is only equal to 1 2 and 0 for n = log 2 M and n < log 2 M , respectively. Hence, for fading environments with a large value of m, using an extra quantization bit improves communication reliability significantly.Index Terms-Maximum likelihood detection, low-resolution ADC, symbol error probability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.