We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10∶11:58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. −0.07 . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m g ≤ 7.7 × 10 −23 eV=c 2 . In all cases, we find that GW170104 is consistent with general relativity.
Modern science often requires the execution of large-scale, multi-stage simulation and data analysis pipelines to enable the study of complex systems. The amount of computation and data involved in these pipelines requires scalable workflow management systems that are able to reliably and efficiently coordinate and automate data movement and task execution on distributed computational resources: campus clusters, national cyberinfrastructures, and commercial and academic clouds. This paper describes the design, development and evolution of the Pegasus Workflow Management System, which maps abstract workflow descriptions onto distributed computing infrastructures. Pegasus has been used for more than twelve years by scientists in a wide variety of domains, including astronomy, seismology, bioinformatics, physics and others. This paper provides an integrated view of the Pegasus system, showing its capabilities that have been developed over time in response to application needs and to the evolution of the scientific computing platforms. The paper describes how Pegasus achieves reliable, scalable workflow execution across a wide variety of computing infrastructures.
Results are presented from a semicoherent search for continuous gravitational waves from the brightest low-mass X-ray binary, Scorpius X-1, using data collected during the first Advanced LIGO observing run. The search combines a frequency domain matched filter (Bessel-weighted F-statistic) with a hidden Markov model to track wandering of the neutron star spin frequency. No evidence of gravitational waves is found in the frequency range 60–650 Hz. Frequentist 95% confidence strain upper limits, h95%0=4.0×10−25, 8.3×10−25, and 3.0×10−25 for electromagnetically restricted source orientation, unknown polarization, and circular polarization, respectively, are reported at 106 Hz. They are ≤10 times higher than the theoretical torque-balance limit at 106 Hz
We report on an all-sky search for periodic gravitational waves in the frequency band 20-475 Hz and with a frequency time derivative in the range of ½−1.0; þ0.1 × 10 −8 Hz=s. Such a signal could be produced by a nearby spinning and slightly nonaxisymmetric isolated neutron star in our galaxy. This search uses the data from Advanced LIGO's first observational run, O1. No periodic gravitational wave signals were observed, and upper limits were placed on their strengths. The lowest upper limits on worst-case (linearly polarized) strain amplitude h 0 are ∼4 × 10 −25 near 170 Hz. For a circularly polarized source (most favorable orientation), the smallest upper limits obtained are ∼1.5 × 10 −25 . These upper limits refer to all sky locations and the entire range of frequency derivative values. For a population-averaged ensemble of sky locations and stellar orientations, the lowest upper limits obtained for the strain amplitude are ∼2.5 × 10 −25 .
We report results of a deep all-sky search for periodic gravitational waves from isolated neutron stars in data from the first Advanced LIGO observing run. This search investigates the low frequency range of Advanced LIGO data, between 20 and 100 Hz, much of which was not explored in initial LIGO. The search was made possible by the computing power provided by the volunteers of the Einstein@Home project. We find no significant signal candidate and set the most stringent upper limits to date on the amplitude of gravitational wave signals from the target population, corresponding to a sensitivity depth of 48.7 ½1= ffiffiffiffiffiffi Hz p . At the frequency of best strain sensitivity, near 100 Hz, we set 90% confidence upper limits of 1.8 × 10 −25 . At the low end of our frequency range, 20 Hz, we achieve upper limits of 3.9 × 10 −24 . At 55 Hz we can exclude sources with ellipticities greater than 10 −5 within 100 pc of Earth with fiducial value of the principal moment of inertia of 10 38 kg m 2 .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.