Many workloads for analytical processing in commercial RDBMSs are dominated by snowstorm queries, which are characterized by references to multiple large fact tables and their associated smaller dimension tables. This paper describes a technique for bushy join tree optimization for snowstorm queries in Oracle database system. This technique generates bushy join trees containing subtrees that produce substantially reduced sets of rows and, therefore, their joins with other subtrees are generally much more efficient than joins in the left-deep trees.The generation of bushy join trees within an existing commercial physical optimizer requires extensive changes to the optimizer. Further, the optimizer will have to consider a large join permutation search space to generate efficient bushy join trees. The novelty of the approach is that bushy join trees can be generated outside the physical optimizer using logical query transformation that explores a considerably pruned search space. The paper describes an algorithm for generating optimal bushy join trees for snowstorm queries using an existing query transformation framework. It also presents performance results for this optimization, which show significant execution time improvements.
Prior to mid-2000s, the space of data analytics was mainly confined within the area of decision support systems . It was a long era of isolated enterprise data ware houses curating information from live data sources and of business intelligence software used to query such information. Most data sets were small enough in volume and static enough invelocity to be segregated in warehouses for analysis. Data analysis was not ad-hoc; it required pre-requisite knowledge of underlying data access patterns for the creation of specialized access methods (e.g. covering indexes, materialized views) in order to efficiently execute a set of few focused queries.
Real-time analytics on massive datasets has become a very common need in many enterprises. These applications require not only rapid data ingest, but also quick answers to analytical queries operating on the latest data. MemSQL is a distributed SQL database designed to exploit memory-optimized, scale-out architecture to enable real-time transactional and analytical workloads which are fast, highly concurrent, and extremely scalable. Many analytical queries in MemSQL's customer workloads are complex queries involving joins, aggregations, subqueries, etc. over star and snowflake schemas, often ad-hoc or produced interactively by business intelligence tools. These queries often require latencies of seconds or less, and therefore require the optimizer to not only produce a high quality distributed execution plan, but also produce it fast enough so that optimization time does not become a bottleneck. In this paper, we describe the architecture of the MemSQL Query Optimizer and the design choices and innovations which enable it quickly produce highly efficient execution plans for complex distributed queries. We discuss how query rewrite decisions oblivious of distribution cost can lead to poor distributed execution plans, and argue that to choose high-quality plans in a distributed database, the optimizer needs to be distribution-aware in choosing join plans, applying query rewrites, and costing plans. We discuss methods to make join enumeration faster and more effective, such as a rewrite-based approach to exploit bushy joins in queries involving multiple star schemas without sacrificing optimization time. We demonstrate the effectiveness of the MemSQL optimizer over queries from the TPC-H benchmark and a real customer workload.
Network communication is the slowest component of many operators in distributed parallel databases deployed for largescale analytics. Whereas considerable work has focused on speeding up databases on modern hardware, communication reduction has received less attention. Existing parallel DBMSs rely on algorithms designed for disks with minor modifications for networks. A more complicated algorithm may burden the CPUs, but could avoid redundant transfers of tuples across the network. We introduce track join, a novel distributed join algorithm that minimizes network traffic by generating an optimal transfer schedule for each distinct join key. Track join extends the trade-off options between CPU and network. Our evaluation based on real and synthetic data shows that track join adapts to diverse cases and degrees of locality. Considering both network traffic and execution time, even with no locality, track join outperforms hash join on the most expensive queries of real workloads.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.