Materials with an intrinsic (ultra)low lattice thermal conductivity (k L ) are critically important for the development of efficient energy conversion devices. In the present work, we have investigated microscopic origins of low k L behavior in BaO, BaS, and MgTe by exploring lattice dynamics and phonon transport of 16 isostructural MX (M = Mg, Ca, Sr, and Ba and X = O, S, Se, and Te) compounds in the rocksalt (NaCl)-type structure. Anomalous trends are observed for k L in MX (M = Mg, Ca, Sr, and Ba and X = O, S, Se, and Te) compounds except for the MgX (X = O, S, Se, and Te) series in contrast to the expected trend from their atomic mass. The underlying mechanisms for such low k L behavior in large mismatch atomic mass systems, namely, BaO, BaS, and MgTe, are thoroughly analyzed. We propose the following factors that might be responsible for low k L behavior in these materials: (1) high mass contrast provides a phonon gap between the acoustic and optic branches; (2) softening of transverse acoustic (TA) phonon modes due to the presence of heavy element; (3) low-lying optic (LLO) phonon modes fall into the acoustic mode region and are responsible for softening of the acoustic phonon modes or enhancing the overlap between LLO (TO) and longitudinal acoustic (LA) phonon modes, thereby increasing scattering rates; (4) shorter phonon lifetimes; and (5) a relatively high density (ρ) and a large Gruneisen parameter (γ) leads to strong anharmonicity. Moreover, tensile strain causes a further reduction in k L for BaO, BaS, and MgTe through phonon softening and near ferroelectric instability. Our comprehensive study on 16 binary MX (M = Mg, Ca, Sr, and Ba and X = O, S, Se, and Te) compounds provides a pathway for designing (ultra)low k L materials through phonon engineering even with simple crystal systems.
We analyze, through molecular dynamics simulations, the temperature dependence of the thermal conductivity (k) of chain-oriented amorphous polyethylene (PE). We find that at increasing levels of orientation, the temperature corresponding to a peak k progressively decreases. Un-oriented PE exhibits the peak k at 350 K, while aligned PE under an applied strain of 400% shows a maximum at 100 K. This transition of peak k to lower temperatures with increasing alignment is explained in terms of a crossover from disorder to anharmonicity dominated phonon transport in aligned polymers. Evidence for this crossover is achieved by manipulating the disorder in the polymer structure and studying the resulting change in temperature corresponding to peak k. Disorder is modified through a change in the dihedral parameters of the potential function, allowing a change in the relative fraction of trans and gauche transformations. The results shed light on the underlying thermal transport processes in aligned polymers and hold importance for low temperature applications of polymer materials in thermal management technologies. Published by AIP Publishing.
In this work, we demonstrate that edge oxidation of graphene can enable larger enhancement in thermal conductivity (k) of graphene nanoplatelet (GnP)/polyetherimide (PEI) composites relative to oxidation of the basal plane of graphene. Edge oxidation offers the advantage of leaving the basal plane of graphene intact, preserving its high in-plane thermal conductivity (k in > 2000 W m −1 K −1 ), while, simultaneously, the oxygen groups introduced on the graphene edge enhance interfacial thermal conductance through hydrogen bonding with oxygen groups of PEI, enhancing the overall polymer composite thermal conductivity. Edge oxidation is achieved in this work by oxidizing graphene in the presence of sodium chlorate and hydrogen peroxide, thereby introducing an excess of carboxyl groups on the edge of graphene. Basal plane oxidation of graphene, on the other hand, is achieved through the Hummers method, which distorts the sp 2 carbon−carbon network of graphene, dramatically lowering its intrinsic thermal conductivity, causing the BGO/PEI (BGO = basal-plane oxidized graphene or basal-plane-functionalized graphene oxide) composite's k value to be even lower than pristine GnP/PEI composite's k value. The resulting thermal conductivity of the EGO/PEI (EGO = edge-oxidized graphene or edge-functionalized graphene oxide) composite is found to be enhanced by 18%, whereas that of the BGO/PEI composite is diminished by 57%, with respect to the pristine GnP/PEI composite with 10 wt % GnP content. Two-dimensional Raman mapping of GnPs is used to confirm and distinguish the location of oxygen functional groups on graphene. The superior effect of edge bonding presented in this work can lead to fundamentally novel pathways for achieving high thermal conductivity polymer composites.
Understanding the interplay between various design strategies (for instance, bonding heterogeneity and lone pair induced anharmonicity) to achieve ultralow lattice thermal conductivity (κ l ) is indispensable for discovering novel functional materials for thermal energy applications. In the present study, we investigate layered PbXF (X = Cl, Br, I), which offers bonding heterogeneity through the layered crystal structure, anharmonicity through the Pb 2+ 6s 2 lone pair, and phonon softening through the mass difference between F and Pb/X. The weak inter-layer van der Waals bonding and the strong intra-layer ionic bonding with partial covalent bonding result in a significant bonding heterogeneity and a poor phonon transport in the out-of-plane direction.Large average Grüneisen parameters (≥ 2.5) demonstrate strong anharmonicity. The computed phonon dispersions show flat bands, which suggest short phonon lifetimes, especially for PbIF. Enhanced Born effective charges are due to cross-band-gap hybridization. PbIF shows lattice instability at a small volume expansion of 0.1%. The κ l values obtained by the two channel transport model are 20-50% higher than those obtained by solving the Boltzmann transport equation. Overall, ultralow κ l values are found at 300 K, especially for PbIF. We propose that the interplay of bonding heterogeneity, lone pair induced anharmonicity, and constituent elements with high mass difference aids the design of low κ l materials for thermal energy applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.