At BARC, development of a Low Energy High Intensity Proton Accelerator (LEHIPA), as front-end injector of the 1 GeV accelerator for the ADS programme, has been initiated. The major components of LEHIPA (20 MeV, 30 mA) are a 50 keV ECR ion source, a 3 MeV Radio Frequency Quadrupole (RFQ) and a 20 MeV drift tube linac (DTL). The Low Energy Beam Transport (LEBT) and Medium Energy Beam Transport (MEBT) lines match the beam from the ion source to RFQ and from RFQ to DTL respectively. Design of these systems has been completed and fabrication of their prototypes has started. Physics studies of the 20-1000 MeV part of the Linac are also in progress. In this paper, the present status of this project is presented.
A 20 MeV, 30 mA CW proton linac is being developed at BARC, Mumbai. This linac will consist of an ECR ion source followed by a Radio Frequency Quadrupole (RFQ) and Drift tube Linac (DTL). The low energy beam transport (LEBT) line is used to match the beam from the ion source to the RFQ with minimum beam loss and increase in emittance. The LEBT is also used to eliminate the unwanted ions like H + 2 and H + 3 from entering the RFQ. In addition, space charge compensation is required for transportation of such high beam currents. All this requires careful design and optimization. Detailed beam dynamics simulations have been done to optimize the design of the LEBT using the Particle-in-cell code TRACEWIN. We find that with careful optimization it is possible to transport a 30 mA CW proton beam through the LEBT with 100% transmission and minimal emittance blow up, while at the same time suppressing unwanted species H + 2 and H + 3 to less than 3.3% of the total beam current.
We have performed detailed electromagnetic and beam dynamics studies of a 352.21 MHz drift-tube linac (DTL) that will accelerate a 30 mA CW proton beam from 3 to 20 MeV. At such high currents space charge effects are important, and therefore the effect of linear as well as non-linear space charge has been studied (corresponding to uniform and Gaussian initial beam distributions), in order to avoid space charge instabilities. To validate the electromagnetic simulations, a 1.2 m long prototype of the DTL was fabricated. RF measurements performed on the prototype were in good agreement with the simulations. A detailed simulation study of beam halos was also performed, which showed that beyond a current of 10 mA, significant longitudinal beam halos are excited even for a perfectly matched beam, whereas for a mis-matched beam transverse beam halos are also excited. However, these do not lead to any beam loss within the DTL.
A deuteron radio frequency quadrupole (RFQ) accelerator has been designed, fabricated, and tested at BARC, which will be used for neutron generation. The RFQ operates at a frequency of 350 MHz and needs an inter-vane voltage of 44 kV to accelerate the deuteron beam to 400 keV within a length of 1.03 m. The error analysis shows that the offset of two opposite vanes in the same direction by 100 μm leads to a change in resonant frequency by 1.3 MHz and a significant change of fields in the quadrants (∼±40% with respect to average field). From the 3D analysis, we have observed that the unwanted dipole mode frequencies are very near to the quadrupole mode frequency which will make structure sensitive to the perturbations. In order to move the dipole modes away from the quadrupole modes, we have used the dipole stabilizer rods. The 5 wire transmission line theory was used to study the perturbative analysis of the RFQ and based on this a computer program has been written to tune the cavity to get required field distribution. Based on these studies, a 1.03 m long RFQ made of OFE copper has been fabricated and tested. Even though the RFQ was designed for deuteron (D(+)) beam, we tested it by accelerating both the proton (H(+)) and D(+) beams. The RFQ was operated in pulsed mode and accelerated both H(+) and D(+) beams to designed values of 200 and 400 keV, respectively. The measured parameters are in good agreement with the designed values validating our simulations and fabrication processes. In this paper, simulations, RF measurements, and beam commissioning results are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.