SUR2A is an ATP-binding protein that serves as a regulatory subunit of cardioprotective ATP-sensitive K+ (KATP) channels. Based on signalling pathway regulating SUR2A expression and SUR2A role in regulating numbers of fully assembled KATP channels, we have suggested that nicotinamide-rich diet could improve physical endurance by stimulating SUR2A expression. We have found that mice on nicotinamide-rich diet significantly improved physical endurance, which was associated with significant increase in expression of SUR2A. Transgenic mice with solely overexpressed SUR2A on control diet had increased physical endurance in a similar manner as the wild-type mice on nicotinamide-rich diet. The experiments focused on action membrane potential and intracellular Ca2+ concentration have demonstrated that increased SUR2A expression was associated with the activation of sarcolemmal KATP channels and steady Ca2+ levels in cardiomyocytes in response to β-adrenergic stimulation. In contrast, the same challenge in the wild-type was characterized by a lack of the channel activation and rise in intracellular Ca2+. Nicotinamide-rich diet was ineffective to increase physical endurance in mice lacking KATP channels. This study has shown that nicotinamide-rich diet improves physical endurance by increasing expression of SUR2A and that this is a sole mechanism of the nicotinamide-rich diet effect. The obtained results suggest that oral nicotinamide is a regulator of SUR2A expression and has a potential as a drug that can improve physical endurance in conditions where this effect would be desirable.
Ageing is characterized by decline in physical endurance which has been suggested to be partly due to diminished functional and adaptive reserve capacity of the heart. Ageing is associated with decrease in numbers of sarcolemmal ATP-sensitive K(+) (K(ATP)) channels, but whether this has anything to do with ageing-induced decline in physical endurance is yet to be determined. We have previously shown that the numbers of sarcolemmal K(ATP) channels are controlled by the level of expression of SUR2A, a K(ATP) channel regulatory subunit. Here, we have found that ageing decreases the level of SUR2A mRNA in the heart without affecting expression of pore-forming K(ATP) channel subunits, Kir6.1 and Kir6.2. This effect of ageing was associated with decrease in levels of fully-assembled sarcolemmal K(ATP) channels. At the same time, ageing was associated with decreased physical endurance. In order to determine whether increased expression of SUR2A would counteract ageing-induced decrease in physical endurance, we have taken advantage of mice which SUR2A levels are regulated by more efficient CMV promoter. These mice had increased resistance of cardiomyocytes to metabolic stress/hypoxia and increased physical endurance when compared to the wild type. In transgenic mice, ageing did not affect the level of SUR2A mRNA in the heart and the level of fully-assembled sarcolemmal K(ATP) channels. The effect of increased SUR2A to resistance of cardiomyocytes to hypoxia and physical endurance was retained in old mice. The magnitude of these effects was such that they were significantly increased even when compared to those in wild type young mice. We conclude that (1) the level of SUR2A expression in the heart is important factor in regulating physical endurance, (2) ageing-induced decrease in cardiac SUR2A is, at least in part, responsible for ageing-induced decline in physical fitness and (3) up-regulation of SUR2A could be a viable strategy to counteract ageing-induced decline in physical endurance.
SPAK (Ste20/SPS1‐related proline/alanine‐rich kinase) has been recently identified as a protein kinase which targets the electroneutral cation‐coupled chloride cotransporters and it stands out as a target for inhibition in novel anti‐hypertensive agents. From this prospective, any information about physiological consequences of SPAK inhibition would be useful to better understand the efficacy and potential adverse effects of the SPAK‐based anti‐hypertensive therapy. Radiotelemetry was employed to continuously measure the parameters of blood pressure (mean arterial blood pressure, systolic blood pressure, and diastolic blood pressure), heart rate, and physical activity in SPAK knock‐in (KI) mice and littermate controls for 24 h. For each parameter, the area under the curve (AUC) was calculated and compared between the SPAK KI mice and wild type mice. There was no statistically significant difference in the AUC of blood pressure parameters between SPAK KI and littermate mice. When mice were physically inactive, the AUCs for blood pressures were significantly lower in SPAK KI than in littermates. When physically active, blood pressures were significantly higher in SPAK KI than in littermates. The heart rate followed a similar pattern. The AUC of physical activity was significantly increased in SPAK KI mice when compared to littermates and the SPAK KI mice spent significantly less time in an inactive state and significantly more time in active states. Comparison between SPAK KI mice and unrelated wild type mice yielded similar results to the comparison between SPAK KI mice and littermates. We conclude that SPAK inhibition increases spontaneous locomotor activity, which has a significant effect on blood pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.