FeCrAl alloys are a leading candidate material for accident tolerant fuel cladding due to their good performance in both normal light-water reactor operating conditions as well as their resilience to high-temperature accident scenarios. For commercial-scale production, new fabrication techniques need to be investigated. In this study, the effects of fabrication methods on the high-temperature steam oxidation performance of C26M (Fe12Cr6Al2Mo in wt.%) were investigated. Three variants of C26M were manufactured: wrought (cast and forged) (WC26M), powder metallurgy hot isostatic pressing (PMC26M), and laser powder bed fusion additive manufacturing (AMC26M). All three variants were exposed to steam at 1200°C for 2 h. Results showed no significant variation in mass change between the variants after steam exposure. All three variants effectively formed stable protective alumina films with ~0.6–1.3 µm thickness. This study suggests FeCrAl alloys have excellent resilience to high-temperature steam in nuclear reactor accident scenarios regardless of the fabrication method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.