Latent Semantic Analysis (LSA) makes the machine clearly conceptualize the terms of the document by learning the context in which these terms are written. However, LSA suffers from the limitation of input data matrix size in terms of number of terms and number of documents of the considered dataset. When the size of the dataset is huge, LSA becomes inefficient towards learning the correct context and thereby is unable to produce the intended concepts by the machine. To overcome this problem, Context Disambiguation (ConDis) ontology is engineered for a domain which has the capability of evolving itself based on automatic learning of concepts and relations from the ever scaling documents over the web. The concept hierarchies from general to specific concepts combined with corresponding object relations specify the particular context for a term. These object relations based concept hierarchies clearly help disambiguate the context of the concept terms in an effective manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.