Invasive fungal infections are common clinical complications of neonates, critically ill, and immunocompromised patients worldwide. Candida species are the leading cause of disseminated fungal infections, with Candida albicans being the most prevalent species. Candida glabrata, the second/third most common cause of candidemia, shows reduced susceptibility to a widely used antifungal drug fluconazole. Here, we present findings from a screen of 9134 C. glabrata Tn7 insertion mutants for altered survival profiles in the presence of fluconazole. We have identified two components of RNA polymerase II mediator complex, three players of Rho GTPase-mediated signaling cascade, and two proteins implicated in actin cytoskeleton biogenesis and ergosterol biosynthesis that are required to sustain viability during fluconazole stress. We show that exposure to fluconazole leads to activation of the protein kinase C (PKC)-mediated cell wall integrity pathway in C. glabrata. Our data demonstrate that disruption of a RhoGAP (GTPase activating protein) domain-containing protein, CgBem2, results in budemergence defects, azole susceptibility, and constitutive activation of CgRho1-regulated CgPkc1 signaling cascade and cell wall-related phenotypes. The viability loss of Cgbem2⌬ mutant upon fluconazole treatment could be partially rescued by the PKC inhibitor staurosporine. Additionally, we present evidence that CgBEM2 is required for the transcriptional activation of genes encoding multidrug efflux pumps in response to fluconazole exposure. Last, we report that Hsp90 inhibitor geldanamycin renders fluconazole a fungicidal drug in C. glabrata.
Fungal virulence is regulated by a tight interplay of transcriptional control and chromatin remodelling. Despite compelling evidence that lysine acetylation modulates virulence of pathogenic fungi such as
Candida albicans
, the underlying mechanisms have remained largely unexplored. We report here that Gcn5, a paradigm lysyl-acetyl transferase (KAT) modifying both histone and non-histone targets, controls fungal morphogenesis – a key virulence factor of
C
.
albicans
. Our data show that genetic removal of
GCN5
abrogates fungal virulence in mice, suggesting strongly diminished fungal fitness
in vivo
. This may at least in part arise from increased susceptibility to killing by macrophages, as well as by other phagocytes such as neutrophils or monocytes. Loss of
GCN5
also causes hypersensitivity to the fungicidal drug caspofungin. Caspofungin hypersusceptibility requires the master regulator Efg1, working in concert with Gcn5. Moreover, Gcn5 regulates multiple independent pathways, including adhesion, cell wall-mediated MAP kinase signaling, hypersensitivity to host-derived oxidative stress, and regulation of the Fks1 glucan synthase, all of which play critical roles in virulence and antifungal susceptibility. Hence, Gcn5 regulates fungal virulence through multiple mechanisms, suggesting that specific inhibition of Gcn5 could offer new therapeutic strategies to combat invasive fungal infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.