Twitter has become one of the most sought after places to discuss a wide variety of topics, including medically relevant issues such as cancer. This helps spread awareness regarding the various causes, cures and prevention methods of cancer. However, no proper analysis has been performed, which discusses the validity of such claims. In this work, we aim to tackle the misinformation spread in such platforms. We collect and present a dataset regarding tweets which talk specifically about cancer and propose an attention-based deep learning model for automated detection of misinformation along with its spread. We then do a comparative analysis of the linguistic variation in the text corresponding to misinformation and truth. This analysis helps us gather relevant insights on various social aspects related to misinformed tweets.
Twitter has become one of the most sought after places to discuss a wide variety of topics, including medically relevant issues such as cancer. This helps spread awareness regarding the various causes, cures and prevention methods of cancer. However, no proper analysis has been performed, which discusses the validity of such claims. In this work, we aim to tackle the misinformation spread in such platforms. We collect and present a dataset regarding tweets which talk specifically about cancer and propose an attention-based deep learning model for automated detection of misinformation along with its spread. We then do a comparative analysis of the linguistic variation in the text corresponding to misinformation and truth. This analysis helps us gather relevant insights on various social aspects related to misinformed tweets.
Recommender systems are one of the most widely used services on several online platforms to suggest potential items to the end-users. These services often use different machine learning techniques for which fairness is a concerning factor, especially when the downstream services have the ability to cause social ramifications. Thus, focusing on the non-personalised (global) recommendations in news media platforms (e.g., top-k trending topics on Twitter, top-k news on a news platform, etc.), we discuss on two specific fairness concerns together (traditionally studied separately)---user fairness and organisational fairness. While user fairness captures the idea of representing the choices of all the individual users in the case of global recommendations, organisational fairness tries to ensure politically/ideologically balanced recommendation sets. This makes user fairness a user-side requirement and organisational fairness a platform-side requirement. For user fairness, we test with methods from social choice theory, i.e., various voting rules known to better represent user choices in their results. Even in our application of voting rules to the recommendation setup, we observe high user satisfaction scores. Now for organisational fairness, we propose a bias metric which measures the aggregate ideological bias of a recommended set of items (articles). Analysing the results obtained from voting rule-based recommendation, we find that while the well-known voting rules are better from the user side, they show high bias values and clearly not suitable for organisational requirements of the platforms. Thus, there is a need to build an encompassing mechanism by cohesively bridging ideas of user fairness and organisational fairness. In this abstract paper, we intend to frame the elementary ideas along with the clear motivation behind the requirement of such a mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.