Four years of Indian Institute of Tropical Meteorology lightning location network lightning observation data are used to determine the seasonal and spatial (over different geographical locations) distribution of the ratio of intra‐cloud (IC) lightning to cloud‐to‐ground (CG) lightning in thunderstorms over the Indian subcontinent. The ratio is high (6–10) in the northwestern parts and low (0.5–3.5) in the northeastern parts. No prominent latitudinal variation of the IC to CG ratio exists, but a climatological seasonal variability exists over all regions. In the pre‐monsoon season (March–May), the mean ratio is observed to be 3.81 with a standard deviation of 0.79, and during the monsoon season (June–September), a value of 3.04 with a standard deviation of 0.50. Although convective available potential energy is the regulating factor, little dependency has been found between the ratio of IC to CG lightning (IC:CG ratio) and the total flash rate (f), as well as with cold cloud depths. The ratio is observed to be proportional to the total flash rate as f0.61. The cold cloud depth is most prominently linked with the regional and seasonal IC:CG ratio. The implication of these observed results has the importance of separating CG lightning flash from total and can be used in numerical models to give a proper prediction of CG lightning in hazard mitigation.
<p>The three years of IITM LLN lightning observation data are used to determine the seasonal and spatial (over different geographical locations) distribution of the ratio of intra-cloud lightning (IC) to cloud-to-ground lightning (CG) in thunderstorms over the Indian sub-continent. The ratio is high (8-10) in the north-western parts and low (0.3-3) in the north-eastern parts. There is not a prominent latitudinal variation of IC and CG ratio, but a climatological seasonal variability exists all over the regions. In the Pre-monsoon (March to May), the mean ratio is observed at 3.87 with a standard deviation of 0.74, and during Monsoon (June to September), that is 3.01 with a standard deviation of 0.52. Pre-monsoon thunderstorm exhibits more IC discharge comparatively monsoonal thunderstorms; hence IC:CG ratio is also high in pre-monsoon. We have observed that CG lightning is approximately 20% of total lightning in pre-monsoon whereas 25% of total lightning in monsoon all over the Indian region. High CAPE associated with a stronger vertical updraft enhances the cold cloud depth and expands the mixed phase region, which can broaden and uplift the size of the upper positive charge center inside a thunderstorm while the middle negative charge center remains at the same temperature level. Therefore it enhances the occurrence of IC discharge between the upper positive charge center and middle negative charge center, hence increasing the IC:CG ratio of a thunderstorm. The implication of these observed results has the importance of separating CG lightning flash from total and can be used in the numerical model to give a proper prediction of CG lightning in hazard mitigation.</p> <p><img src="" alt="" /></p> <p>&#160;</p>
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.