Simple dissolution of an arylalkyl acid chloride in 1,1,1,3,3,3-hexafluoro-2-propanol promotes an intramolecular Friedel-Crafts acylation without additional catalysts or reagents. This reaction is operationally trivial in both execution and product isolation (only requiring concentration followed by purification) and accommodates a broad range of substrates. Preliminary studies that bear upon potential reaction mechanisms are reported.
The intermolecular Friedel-Crafts acylation was carried out in hexafluoro-2-propanol to yield aryl and heteroaryl ketones at room temperature without any additional reagents.
Cathinone and many of its analogs produce behavioral effects by promoting transporter-mediated release of the monoamine neurotransmitters dopamine, norepinephrine and/or serotonin. Stereoselectivity is one determinant of neurochemical and behavioral effects of cathinone analogs. This study compared effectiveness of the S(−) and R(+) enantiomers of cathinone and 4-methylcathinone to produce in vitro monoamine release and in vivo abuse-related behavioral effects in rats. For neurochemical studies, drug effects were evaluated on monoamine release through dopamine, norepinephrine, and serotonin transporters (DAT, NET and SERT, respectively) in rat brain synaptosomes. For behavioral studies, drug effects were evaluated on responding for electrical brain stimulation in an intracranial self-stimulation (ICSS) procedure. The cathinone enantiomers differed in potency [S(−)>R(+)], but both enantiomers were >50-fold selective at promoting monoamine release through DAT vs. SERT, and both enantiomers produced ICSS facilitation. The 4-methylcathinone enantiomers also differed in potency [S(−)>R(+)]; however, in neurochemical studies, the decrease in potency from S(−) to R(+)4-methylcathinone was less for DAT than for SERT, and as a result, DAT vs. SERT selectivity was greater for R(+) than for S(−)4-methylcathinone (4.1- vs. 1.2-fold). Moreover, in behavioral studies, S(−)4-methylcathinone produced only ICSS depression, whereas R(+)4-methylcathinone produced ICSS facilitation. This study provides further evidence for stereoselectivity in neurochemical and behavioral actions of cathinone analogs. More importantly, stereoselective 4-methylcathinone effects on ICSS illustrate the potential for diametrically opposite effects of enantiomers in a preclinical behavioral assay of abuse potential.
The development of novel therapeutics that exploit alterations in the activation state of key cellular signaling pathways due to mutations in upstream regulators has generated the field of personalized medicine. These first-generation efforts have focused on actionable mutations identified by deep sequencing of large numbers of tumor samples. We propose that a second-generation opportunity exists by exploiting key downstream “nodes of control” that contribute to oncogenesis and are inappropriately activated due to loss of upstream regulation and microenvironmental influences. The RNA-binding protein HuR represents such a node. Because HuR functionality in cancer cells is dependent on HuR dimerization and its nuclear/cytoplasmic shuttling, we developed a new class of molecules targeting HuR protein dimerization. A structure–activity relationship algorithm enabled development of inhibitors of HuR multimer formation that were soluble, had micromolar activity, and penetrated the blood–brain barrier. These inhibitors were evaluated for activity validation and specificity in a robust cell-based assay of HuR dimerization. SRI-42127, a molecule that met these criteria, inhibited HuR multimer formation across primary patient-derived glioblastoma xenolines (PDGx), leading to arrest of proliferation, induction of apoptosis, and inhibition of colony formation. SRI-42127 had favorable attributes with central nervous system penetration and inhibited tumor growth in mouse models. RNA and protein analysis of SRI-42127–treated PDGx xenolines across glioblastoma molecular subtypes confirmed attenuation of targets upregulated by HuR. These results highlight how focusing on key attributes of HuR that contribute to cancer progression, namely cytoplasmic localization and multimerization, has led to the development of a novel, highly effective inhibitor.
Significance:
These findings utilize a cell-based mechanism of action assay with a structure–activity relationship compound development pathway to discover inhibitors that target HuR dimerization, a mechanism required for cancer promotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.