The Jocic-Reeve and Corey-Link type reaction of dichloromethyllithium with suitably protected 5-keto-hexofuranoses followed by treatment with sodium azide and sodium borohydride reduction gave 5-azido-5-hydroxylmethyl substituted hexofuranoses 7a-c with required geminal dihydroxymethyl group. Removal of protecting groups and converting the C-1 anomeric carbon into free hemiacetal followed by intramolecular reductive aminocyclization with in situ generated C5-amino functionality afforded corresponding 5C-dihydroxymethyl piperidine iminosugars 2a-c. Alternatively, removal of protecting groups in 7b and 7c and chopping of C1-anomeric carbon gave C2-aldehyde that on intramolecular reductive aminocyclization with C5-amino gave 4C-dihydroxymethyl pyrrolidine iminosugars 1b and 1c, respectively. On the basis of the (1)H NMR studies, the conformations of 2a/2b were assigned as (4)C(1) and that of 2c as (1)C(4). The glycosidase inhibitory activities of all five iminosugars were studied with various glycosidase enzymes and compared with natural d-gluco-1-deoxynojirimycin (DNJ). All the five compounds were found to be potent inhibitors of rice α-glucosidase with K(i) and IC(50) values in the nanomolar concentration range. Iminosugars 2b and 1b were found to be more potent inhibitors than their parent iminosugar. These results were substantiated by in silico molecular docking studies.
Bioprospecting of natural molecules is essential to overcome serious environmental issues and pesticide resistance in insects. Here we are reporting insights into insecticidal activity of a plant natural phenol. In silico and in vitro screening of multiple molecules supported by in vivo validations suggested that caffeic acid (CA) is a potent inhibitor of Helicoverpa armigera gut proteases. Protease activity and gene expression were altered in CA-fed larvae. The structure-activity relationship of CA highlighted that all the functional groups are crucial for inhibition of protease activity. Biophysical studies and molecular dynamic simulations revealed that sequential binding of multiple CA molecules induces conformational changes in the protease(s) and thus lead to a significant decline in their activity. CA treatment significantly inhibits the insect's detoxification enzymes, thus intensifying the insecticidal effect. Our findings suggest that CA can be implicated as a potent insecticidal molecule and explored for the development of effective dietary pesticides.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has resulted in the current COVID-19 pandemic. Worldwide this disease has infected around 1.5 million individuals with a mortality rate ranging from 5 to 10%. There are several efforts are going on in the drug discovery to control the SARS-CoV-2 viral infection. The main protease (MPro) plays a critical role in viral replication and maturation, thus can serve as the primary drug target. To understand the structural evolution of MPro, we have performed phylogenetic and SSN analysis, that depicted divergence of Coronaviridae MPro in five
A unique surgical mission model consisting of an international collaborative focused on treating the complex diagnoses of BE and PE offers outcomes comparable with those in high-income countries, demonstrating a significant patient retention rate and an opportunity to rigorously study outcomes over an accelerated interval owing to the high burden of disease in India. Postoperative care following a systematized algorithm and rigorous follow-up is mandatory to ensure safety and optimal outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.