Stable chronic functionality of intracortical probes is of utmost importance toward realizing clinical application of brain-machine interfaces. Sustained immune response from the brain tissue to the neural probes is one of the major challenges that hinder stable chronic functionality. There is a growing body of evidence in the literature that highly compliant neural probes with sub-cellular dimensions may significantly reduce the foreign-body response, thereby enhancing long term stability of intracortical recordings. Since the prevailing commercial probes are considerably larger than neurons and of high stiffness, new approaches are needed for developing miniature probes with high compliance. In this paper, we present design, fabrication, and in vitro evaluation of ultra-miniature (2.7 μm x 10 μm cross section), ultra-compliant (1.4 × 10 μN/μm in the axial direction, and 2.6 × 10 μN/μm and 1.8 × 10 μN/μm in the lateral directions) neural probes and associated probe-encasing biodissolvable delivery needles toward addressing the aforementioned challenges. The high compliance of the probes is obtained by micron-scale cross-section and meandered shape of the parylene-C insulated platinum wiring. Finite-element analysis is performed to compare the strains within the tissue during micromotion when using the ultra-compliant meandered probes with that when using stiff silicon probes. The standard batch microfabrication techniques are used for creating the probes. A dissolvable delivery needle that encases the probe facilitates failure-free insertion and precise placement of the ultra-compliant probes. Upon completion of implantation, the needle gradually dissolves, leaving behind the ultra-compliant neural probe. A spin-casting based micromolding approach is used for the fabrication of the needle. To demonstrate the versatility of the process, needles from different biodissolvable materials, as well as two-dimensional needle arrays with different geometries and dimensions, are fabricated. Further, needles incorporating anti-inflammatory drugs are created to show the co-delivery potential of the needles. An automated insertion device is developed for repeatable and precise implantation of needle-encased probes into brain tissue. Insertion of the needles without mechanical failure, and their subsequent dissolution are demonstrated. It is concluded that ultra-miniature, ultra-compliant probes and associated biodissolvable delivery needles can be successfully fabricated, and the use of the ultra-compliant meandered probes results in drastic reduction in strains imposed in the tissue as compared to stiff probes, thereby showing promise toward chronic applications.
Purpose Design and evaluate a new micro-machining based approach for fabricating dissolvable microneedle arrays (MNAs) with diverse geometries and from different materials for dry delivery to skin microenvironments. The aims are to describe the new fabrication method, to evaluate geometric and material capability as well as reproducibility of the method, and to demonstrate the effectiveness of fabricated MNAs in delivering bioactive molecules. Methods Precise master molds were created using micromilling. Micromolding was used to create elastomer production molds from master molds. The dissolvable MNAs were then fabricated using the spin-casting method. Fabricated MNAs with different geometries were evaluated for reproducibility. MNAs from different materials were fabricated to show material capability. MNAs with embedded bioactive components were tested for functionality on human and mice skin. Results MNAs with different geometries and from carboxymethyl cellulose, polyvinyl pyrrolidone and maltodextrin were created reproducibly using our method. MNAs successfully pierce the skin, precisely deliver their bioactive cargo to skin and induce specific immunity in mice. Conclusions We demonstrated that the new fabrication approach enables creating dissolvable MNAs with diverse geometries and from different materials reproducibly. We also demonstrated the application of MNAs for precise and specific delivery of biomolecules to skin microenvironments in vitro and in vivo.
Ultra-compliant neural probes implanted into tissue using a molded, biodissolvable sodium carboxymethyl cellulose (Na-CMC)-saccharide composite needle delivery vehicle are subjected to fluid-structure interactions that can displace the recording site of the probe with respect to its designed implant location. We applied particle velocimetry to analyze the behavior of ultra-compliant structures under different implantation conditions for a range of CMC-based materials and identified a fluid management protocol that resulted in the successful targeted depth placement of the recording sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.