The local convergence analysis of a parameter based iteration with Hölder continuous first derivative is studied for finding solutions of nonlinear equations in Banach spaces. It generalizes the local convergence analysis under Lipschitz continuous first derivative. The main contribution is to show the applicability to those problems for which Lipschitz condition fails without using higher order derivatives. An existence-uniqueness theorem along with the derivation of error bounds for the solution is established. Different numerical examples including nonlinear Hammerstein equation are solved. The radii of balls of convergence for them are obtained. A substantial improvement of these radii are found in comparison to some other existing methods under similar conditions for all examples considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.